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Concepts of CS

Objectives

1 to introduce some fundamental concept in Compressive
Sensing (CS)
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Concepts of CS

Sparse Signals

1 Sparse signal is the key assumption in compressive sensing
2 it is defined as: discrete signal with a lot of zeros and a small

amount of non-zeros values
3 An example of discrete, time domain, sparse signal (sparsity :

k = 4):

n

x(n)

4 An example of non-sparse signal

n

x(n)

SUMMER SCHOOL 2019 School of Electrical and Informatics 3 / 23



Concepts of CS

Sparse Signals

1 Sparse signal is the key assumption in compressive sensing
2 it is defined as: discrete signal with a lot of zeros and a small

amount of non-zeros values
3 An example of discrete, time domain, sparse signal (sparsity :

k = 4):

n

x(n)

4 An example of non-sparse signal

n

x(n)

SUMMER SCHOOL 2019 School of Electrical and Informatics 4 / 23



Concepts of CS

Sparse signal : Some concepts

1 sparsity level (k ) = number of non-zeros element
2 minimum sparsity = 1
3 Sparsity can be extended in any bases
4 For example, sinusoidal signal: not sparse in time domain,

but sparse in frequency domain.

Time domain sinusoid signal Sparse frequency domain signal
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Concepts of CS

Sparse signal : Some concepts

1 In most cases it is always possible to transform a non-sparse
signal into a sparse signal using a certain transform (base)

2 Finding this base transform is the real challenge
3 A signal x is called sparse (in a base Φ), if Dx is sparse, where

Dx = Φx

4 Some popular transforms: Fourier, DCT, etc.
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Concepts of CS

Sparse signal : Some concepts

1 Also, most of real life signal falls into compressible rather
than sparse signal

2 Compressible signal is amplitude decaying signal with view
spikes

3 By thresholding, compressible signal can be converted to
sparse signal

Compressible signal After thresholding (vthresh = 3)
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Concepts of CS

CS Compression

n

x(n)

n

y(n)

N

A

1 CS compression is performed by linear (matrix) multiplication

y = Ax

2 x is sparse signal or vector of length N
3 y is compressed signal of length M (M << N)
4 A a compression matrix or measurement matrix or sensing

matrix m × n
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Concepts of CS

CS Compression : Example

1 let x = [3 0 1 0 0 0]T

2 let A =

−0.0604 0.7160 0.3883 0.7957 0.2403 −0.6501
0.7252 0.3393 0.8827 0.5590 −0.6438 −0.6058
0.6859 −0.6101 0.2647 −0.2333 0.7265 −0.4588




3 then: y = Ax =
[
0.207 3.058 2.322

]T

4 In this example, the length of x is 6 with sparsity of 2
5 Compression matrix A is normalized Gaussian random

distributed with dimension 3× 6
6 y has length 3, while x has 6 (compression ratio 1: 2).
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Concepts of CS

Advantage of CS over classical compression

1 Classical compression has two steps: acquisition and then
compression separately.

Figure : Classical sampling and compression [Source: Baraniuk]
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Concepts of CS

Advantage of CS over classical compression

1 CS combine acquisition and compression in single step.

Figure : Single step CS [Source: Baraniuk]
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Concepts of CS

Practical application of CS

1 Bandwidth limited system (consider for example a large
number of sensors in Wireless Sensor Network (WSN)).

2 Medical application (MRI example)

figure should be added here...
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Concepts of CS

CS Reconstruction

1 Reconstruction is to obtain original signal x from compressed
signal y and compression matrix A

y

A

x

y1 yM

x1 xN
A1,1 A1,N

AM,1 AM,N

???

Figure : CS reconstruction problem

2 given y and A, there are infinite possible solution of x
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Concepts of CS

CS Reconstruction
Ilustration

1 Given x =

[
0
2

]

2 A =
[
0, 4 0, 6

]

3 y = Ax = 1, 2

For reconstruction,
1 given y and A
2 x should be found

3 let x =

[
x1

x2

]

4 Ax = y gives: x =
[
0, 4 0, 6

]
×
[
x1

x2

]
= 1, 2

5 0, 4x1 + 0, 6x2 = 1, 2 or x =

[
t

2− 2
3 t

]
=

[
0
2

]
+

[
1
−2

3

]
t
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Concepts of CS

CS Reconstruction

x1

x2

0, 4x1 + 0, 6x2 = 1, 2

[3, 0]

[0, 2]

x =
t

2− 2
3tt = 0

t = 3

Ax = y

Figure : Reconstruction: infinite solution

1 in this example, two sparse solutions: [0 , 2] and [3 , 0].
2 different A will produce different line profile, but there is

only one correct solution.
3 The compression matrix should ’guide’ to correct solution,

which is [0 , 2].
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Concepts of CS

Selection of A

The theory of A has been discussed by Donoho, Baraniuk, and
Candes1.
Constraints for measurement matrix A can be summarized:

1 Has dimension of M × N with

M ≥ c × k × log N

here: c is a constant, k is sparsity of the signal, N is the
length of the signal

2 Fulfilled restricted isometric property (RIP)

(1− δ) ‖x‖2 ≤ ‖Ax‖2 ≤ (1 + δ) ‖x‖2

δ is a small positive number.

1a b c
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Concepts of CS

Selection of A

Example:
1 Let x =

[
1 0 0 2 0 0 0 0 0 0

]

2 Here: k = 2; N = 10
3 So: M = c × 2× log 10 = 2c
4 if we take c = 2, then M = 4
5 Hence, A is a 4×10 matrixs
6 There no exact method to determine c
7 in practical, c can be taken in [1-2].
8 To fulfill RIP, a random matrix A can be generate, then its

column can be normalized to unity.2

2A detailed example of designing sensing matrix can be found in for example
in: Designing sparse sensing matrix for compressive sensing to reconstruct high
resolution medical images, Tiwari et al. 2015
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Concepts of CS

Application of CS for image

1 It is often necessary to convert 2D image to 1D signal
2 Scanning technique is necessary for this conversion

(a) (b) (c)

Figure : Some scanning techniques

3 Matlab function such as reshape can be used:

x =




2 3 4
1 1 2
0 2 5


� x1D =

[
2 1 0 3 1 2 4 2 5

]T

4 Compression can be applied to new 1D signal x1D
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Concepts of CS

Compression in a certain basis

1 Let x of length N is sparse in Ψ, that is

b = Ψx

or
x = Ψ−1b

where b is a sparse signal
2 We compress x, using A, that is

y = Ax =
(
AΨ−1)b

3 Now, instead of viewing y as a compression of x using A,
4 we view y as a compression of b using AΨ−1

5 Therefore, we reconstruct b from y and AΨ−1

6 Then calculate x = Ψ−1b
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Concepts of CS

Some examples of CS applications

The following are examples of CS applications on various field: 3

1 Audio compression
2 Image compression
3 Missing data reconstruction
4 Direction of Arrival Estimation
5 Watermarking
6 . . . . . .

3This section illustrates some of CS applications in various fields. Detailed
discussion is given in Part III of this course.
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Concepts of CS

Continue to Part II : Reconstruction Theory
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CS reconstruction problem LP CVX

Objectives

1 Challenges in CS reconstruction
2 Introduce some methods for CS reconstruction

• Linear Programming
• Convex Optimization
• Greedy Algorithms
• minimum Total Variant

Notes:

• There are a lot of reconstruction algorithms

• Algorithms given here are just some examples

• Tutorial approach is used in this section

• Matlab and CVX are necessary to try examples and exercises.
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CS reconstruction problem LP CVX

1 CS reconstruction problem

2 LP

3 CVX
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CS reconstruction problem LP CVX

Norm of a vector

Before we start with reconstruction problem, let us review the norm
of a vector.

1 Let x =
[
x1 x2 · · · xN

]T

2 The p-th order norm of x (p ≥ 0) is

‖x‖p = p
√

xp
1 + pp

2 + · · ·+ xp
N

3 0-th order norm (L0): ‖x‖0 = k = number of non-zeros
elements in x.

4 1-st order norm (L1): ‖x‖1 = |x1|+ |x2|+ · · ·+ |xN |
5 2-st order norm (L2): ‖x‖1 =

√
x2

1 + x2
2 + · · ·+ x2

N

6 etc...
7 p is any non-negative real number (0, 1

2 , . . . )
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CS reconstruction problem LP CVX

Norm of a vector

Example
1 Let 




x1 =
[
1 2 0 3 −1

]

x2 =
[
0 2 0 0 −3

] (1)

2 ‖x1‖0 = 4
3 ‖x2‖0 = 2
4 ‖x1‖1 = 7
5 ‖x2‖1 = · · ·
6 ‖x2‖2 = · · ·
7 ‖x2‖2 = · · ·
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CS reconstruction problem LP CVX

Norm of a vector

Two dimension of x:

x1

x2

1 x1

x2

1

Figure : Ilustration of norm for vector of length 2
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CS reconstruction problem LP CVX

Reconstruction Problem

1 In CS compression:
y = Ax

2 as A is M × N, where M << N, then solving x from y = Ax is
under-determined problem with infinite possible solution

3 A correct solution xsol can be obtained from the fact that x is a
sparse signal.

4 Thus, the actual solution is taken from the infinite possible
solution that has the sparsest property

5 Sparsest solution can be described by minimum L0-norm
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CS reconstruction problem LP CVX

Reconstruction Problem

Example:
1 Let 




x1 =
[
1 2 0 3 −1

]

x2 =
[
0 2 0 0 −3

]

x3 =
[
1 0 0 4 −4

]

x4 =
[
2 2 0 4 −1

]
(2)

2 be the solutions of Ax = y
3 the sparsest solution for this particular example x2, k = 2
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CS reconstruction problem LP CVX

Reconstruction Problem

Let examine a simple example:
1 Let

x =
[
2 0 0

]T

2 Let A =

[
0.8 0.7 −0.5
0.6 0.7 0.87

]

3 y = Ax = · · ·
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CS reconstruction problem LP CVX

Reconstruction Problem

1 Now, given y =
[
1.6 1.2

]T and A =

[
0.8 0.7 −0.5
0.6 0.7 0.87

]

2 Find the original x !
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CS reconstruction problem LP CVX

Reconstruction Problem

1 As we know that x is a three dimensional vector, let
x =

[
x1 x2 x3

]T

2 As Ax = y

3 then
[
0.8 0.7 −0.5
0.6 0.7 0.87

]


x1

x2

x3


 =

[
1.6
1.2

]
, or

4

[
0.8x1 + 0.7x2 − 0.5x3

0.6x1 + 0.7x2 + 0.87x3

]
=

[
1.6
1.2

]
.... (*)

5 There are infinite solution of (*)
6 But, as x is sparse, then the sparsest solution of (*) can be

selected as the estimated solution
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CS reconstruction problem LP CVX

Reconstruction Problem

CS reconstruction problem can be formulated as:

min ‖x‖0 subject to Ax = y

A more practical formulation is to use L1-Norm (also called: Basis
Pursuit (BP)):

min ‖x‖1 subject to Ax = y

We can solve BP using LP, Convex Optimization, etc.
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CS reconstruction problem LP CVX

Linear Programming

1 LP is used to solve linear optimization problem 1

2 min objective function subject to constraint function
3 example: minimize x1 − 2x2

subject to
x1 + x2 ≤ 10
−3x1 + 2x2 ≤ 15
x1 ≥ 0 and x2 ≥ 0

4 We write the objective function as :

f (x) = x1 − 2x2 = [1 − 2]
[
x1

x2

]
= cT x, where c = [1 − 2]T

and x = [x1 x2]
T .

1Historically, Dantzig is considered to be the first one to introduce LP problem,
and he proposed the simplex algorithm to solve LP in 1948, one of the most
elegant algorithm in 20th century. A breakthrough method called Interior Point
Method proposed by N. Karmarkar in 1984 to solve LP more efficiently
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CS reconstruction problem LP CVX

Linear Programming

1 Constraint function g(x) : x1 + x2 ≤ 10 and −3x1 + 2x2 ≤ 15,
can be written as:

g(x) =
[

1 1
−3 2

] [
x1

x2

]
−
[
10
15

]
≤
[
0
0

]
or g(x) = Ax− b ≤ 0

where A =

[
1 1
−3 2

]
, and b =

[
10
15

]
, and x = [x1 x2]

T

2 Finally, x1 > 0; x2 > 0 is called as lower bound (LB) condition[
x1

x2

]
>

[
0
0

]
= lb, and lb =

[
0
0

]

3 Using c, A, b, and lb as known parameters, reconstructed x
can be calculated using simplex algorithm in Matlab (linprog
function)

4 xEstimated=linprog(c,A,b,Aeq,Beq,lb,ub)
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CS reconstruction problem LP CVX

Linear Programming

1 xEstimated=linprog(c,A,b,Aeq,beq,lb,ub)

2 Aeq, and beq is matrix that fulfills equality: Aeq x = beq
3 Aeq = [] and beq = [] in case no equality in LP
4 lb and ub is lower and upper bound
5 If ub is not available, just ommit from the function
6 next slide show Matlab example
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CS reconstruction problem LP CVX

Linear Programming

Problem: minimize x1 − 2x2

subject to:
x1 + x2 ≤ 10
−3x1 + 2x2 ≤ 15
x1 ≥ 0 and x2 ≥ 0

Matrices: c =

[
1
−2

]
; A =

[
1 1
−3 2

]
; c =

[
10
15

]
and lb =

[
0
0

]

Matlab code:
c=[1;-2]; % objective function coefficients

A=[1 1; -3 2]; % the LHS constraint matrix

b=[10; 15]; % the RHS constraint matrix

lb=[0 0] ; % lower bounds of x1 and x2

[xEst fVal]=lisnprog(c,A,b,[],[],lb)

disp(sprintf('x1= %f x2=%f\n',xEst(1),xEst(2)))
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CS reconstruction problem LP CVX

Linear Programming

Exercise 1:
Identify c, A, b, and lb and using Matlab solve the following LP
problem:
Problem: minimize −x1 − 2x2 + 3x3

subject to:
x1 + x2 + x3 ≤ 10
x1 − 2x2 + 3x3 ≤ 15
x1 ≥ 0
x2 ≥ 0
x2 ≥ 1
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CS reconstruction problem LP CVX

Linear Programming dan CS reconstruction

Now we discuss how CS rec. using BP is transformed to LP:
1 Problem statement is to solve

min ‖x‖1 subject to Ax = y

2 f (x) = min ‖x‖1 is objective function.
3 Ax = y is constraint function

4 Let x =
[
x1 x2 · · · xN

]T

5 Then f (x) = ‖x‖1 = |x1|+ |x2|+ · · ·+ |xN |
6 Let |x1| ≤ t1, |x2| ≤ t2, · · · , |xN | ≤ tN , then

xi ≤ ti and − xi ≤ ti
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CS reconstruction problem LP CVX

Linear Programming

1 Using this relationship of xi to ti , the optimization problem can
be modified from

min ‖x‖1 = min (|x1|+ |x2|+ · · ·+ |xN |) subject to Ax = y

to

min t1 + t2 + · · ·+ tN subject to At ≥ y and − At ≥ y

2 The constraint At ≥ y and −At ≥ y can be combined into

Apt ≥ yp

where
Ap = [A ; −A]

yp = [y ; y]
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CS reconstruction problem LP CVX

Linear Programming

1 Now the BP is modified from

min ‖x‖1 = min (|x1|+ |x2|+ · · ·+ |xN |) subject to Ax = y

to
min t1 + t2 + · · ·+ tN subject to Apt ≥ yp

with
(3)

2 This LP can be solved using Matlab with:

c =
[
1 1 · · · 1

]T N elements

Ap =

[
A
−A

]

yp =

[
A
−A

]
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CS reconstruction problem LP CVX

Example

Let us try to convert the following BP to LP, and solve it using
Matlab.

1 min ‖x‖1 subject to Ax=y

where A =

[
−0.707 0.8 0
0.707 0.6 −1

]
and y =

[
1.65
−0.25

]
.

2 As A is 2× 3, then x has length of 3 : x =
[
x1 x2 x3

]T

3 The equivalent LP formulation is:

min t1 + t2 + t3 subject to Apt = yp, with:

A =




−0.707 0.8 0
0.707 0.6 −1
0.707 −0.8 0
−0.707 −0.6 1


, yp =




1.65
−0.25
1.65
−0.25


, t =




t1
t2
t3


.
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CS reconstruction problem LP CVX

Matlab code

1 We identify that c =
[
1 1 1

]T ,

ALP = Ap =




−0.707 0.8 0
0.707 0.6 −1
0.707 −0.8 0
−0.707 −0.6 1


, and b = yp =




1.65
−0.25
1.65
−0.25




2 There is no lower bound lp here.

Matlab Code:
c=[1;1;1]; % objective function coefficients

A=[-0.707 0.8 0; 0.707 0.6 -1; 0.707 -0.8 0;...

-0.707 -0.6 1]; % the LHS constraint matrix

b=[1.65; -0.25; 1.65; -0.25]; % the RHS constr. mtx

Aeq = A; beq = b; lb = [0 0 0 0 0 0]

[xEst fVal]=linprog(c,A,b, Aeq, beq, lb)
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CS reconstruction problem LP CVX

Exercise

Transform the following BP to LP, determine c, A, and b, and solve
it using Matlab:

1 min ‖x‖1 subject to Ax=y

where A =

[
0.8 0.5 −0.3
−0.6 −0.87 −0.95

]
and y =

[
0.6
0.9

]
.

2 . . . . . .
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CS reconstruction problem LP CVX

Convex Optimization

1 Convex optimization is a general case of LP
2 Optimization problem: min f (x) subject to g(x) = 0
3 If f (x) is a convex function, and g(x) = 0 form a convex

perimeter/area
4 then this optimization problem can be solved using convex

optimization method
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CS reconstruction problem LP CVX

Linear, Affine, and Convex Combination

1 Consider any two points A and B
2 a combination pf coordinate of A and B:

αA + βB

3 is called Linear Combination if α and β random real number
4 is called Affine Combination if α and β random, but α+ β = 1
5 is called Convex Combination if α and β non-negatif real

number with α+ β = 1

A(2,2)

B(7,3)

x1

x2
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CS reconstruction problem LP CVX

Convex Function

1 In convex optimization, we often encounter the terminology of
convex function.

2 Let f (x) be a certain real function
3 Let also a1 and a2 be non-negative real number
4 if a1 f (xA) + a2 f (xA) ≥ f (a1 xA + a2 xB) is fulfilled for any real

values xA and xB, then f (x) is called convex

x

y

(A)

xA xB

f(xA)

f(xB)

xP

f(xP )

a1f(xA) + a2f(xB)

M
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CS reconstruction problem LP CVX

Convex function

x

y

x

y

(A) (B)

y = f (x) y = g(x)

1 Fig. (A) is a convex function
2 Fig. (B) is not
3 For any convex function, a Global minimum in guaranteed
4 Iterative algorithm is possible to find minimum
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CS reconstruction problem LP CVX

Convex Area

An area S is called convex, if for any convex combination of two
points in S is also in S.

Mathematically: S is convex if A ∈ S and B ∈ S then point P
which is P = a1A + a2B for a1 + a2 = 1 and a1 ≥ 0 and a2 ≥ 0 is
also ∈ S.

S1 S2

S3

c1 c2 c3
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CS reconstruction problem LP CVX

Convex Optimization

1 In CS reconst. problem, as objective function is convex and
constraint functions forms convex area, then Convex
Optimization can be utilized.

2 One of popular method to perform convex optimization is
using Interior Point Method (with Newton-Raphson iteration as
main step)

3 Stephen Boyd (Stanford) wrote a routine to solve convex
optimization problem in Matlab

4 This routine is called CVX 2

5 The syntax to use CVX is called CVX programming
6 It consist of three components: calling CVX, declaring the

variables, declaring the objective function, and finally
declaring the constraint function

2CVX is available for free at CVX research webpage: http://cvxr.com/cvx
SUMMER SCHOOL 2019 School of Electrical and Informatics 29 / 40



CS reconstruction problem LP CVX

Convex Optimization

CVX syntax to solve BP:

cvx begin

cvx end

variables x complex

minimize norm(x,1)

subject to

A ∗ x = y
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CS reconstruction problem LP CVX

Convex Optimization

Steps to install and to run CVX in Matlab:
1 Download the CVX distribution either 32 bit or 64 bit from

cvxr.com
2 Extract CVX in a certain folder
3 Run Matlab
4 In Matlab, go to extracted CVX folder
5 Install CVX by running the script cvx_setup
6 Test installation by issuing command cvx_begin followed by

cvx_end
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CS reconstruction problem LP CVX

Convex Optimization

cvx begin

cvx end

variables x complex

minimize norm(x,1)

subject to

A ∗ x = y
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CS reconstruction problem LP CVX

Convex Optimization

1 Solve Let us try to solve the following BP:
2 min ‖x‖1 subject to Ax=y

where A =

[
−0.707 0.8 0
0.707 0.6 −1

]
and y =

[
1.65
−0.25

]
.

Matlab Code:
A = [-0.707 0.8 0; 0.707 0.6 -1]; % mixing matrix

y = s[1.65; -0.25]; % compressed signal

N = size(A, 2) % length of x

cvx_begin

varibles xEst(N)

minimize norm(xEst, 1)

subject to

A*xEst == y

cvx_end
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CS reconstruction problem LP CVX

Convex Optimization

Exercise 3: solve using Matlab!

1 Let x =
[
2 0 2 0 0 0 0 0 0 0

]T (N = 10)
2 generate A of size 5× 10 with Gaussian Random distribution
3 Normalize each column in A to unity
4 Calculate y = Ay
5 From A and y, using CVX, estimate the original x
6 Try to reduce dimension of A to 3× 10, can we estimate x?
7 Reduce further dimension of A to 2× 10, can we still estimate

x ?
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CS reconstruction problem LP CVX

Noisy system

1 There is a case when x is contaminated by noise (typically
AWGN) before compression:

xN = x + n

2 The noisy xN go through compression:

y = AxN

3 As actual noise n can not be known and can not be estimated,
therefore CS reconstruction should be modified from BP : to
finding a sparse xest that Axest as closed as possible to the y

min ‖xest‖1 subject to ‖Axest − y‖2 ≤ ε
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CS reconstruction problem LP CVX

Noisy system

1 Reconstruction problem:
min ‖xest‖1 subject to ‖Axest − y‖2 ≤ ε

2 is called second order cone problem - SOCP
3 SOCP is a convex problem, therefore CVX capable to solve it

Matlab Code:

cvx_begin

varibles xEst(N)

minimize norm(xEst, 1)

subject to

norm( A*xEst-y,2) < epsilon

cvx_end
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CS reconstruction problem LP CVX

Exercise 4

1 Let x =
[
2 0 2 0 0 0 0 0 0 0

]T (N = 10)
2 Add x with AWGN with SNR = 20 dB
3 generate A of size 5× 10 with Gaussian Random distribution
4 Normalize each column in A to unity
5 Calculate y = AxN

6 From A and y, using CVX, estimate the original xN
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CS reconstruction problem LP CVX

Continues to next slide: Greedy Algorithm...
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CS reconstruction problem LP CVX

Answer to Exercise 3

x = [2 0 2 0 0 0 0 0 0 0]'; % original x

M = 5; N = 10; % dimension of A

A=randn(M,N); % mixing matrix

for ii=1:N % normalize each column

A(:,ii) = A(:,ii)/norm(A(:,ii),2);

end

y=A*x; % compressed signal

%Reconstruction using CVX (BP case)

cvx_begin

variables xEst(N)

minimize norm(xEst, 1)

subject to

A*xEst == y

cvx_end

xEst % display the estimation result
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CS reconstruction problem LP CVX

Answer to Exercise 4

x = [2 0 2 0 0 0 0 0 0 0]'; % original x

M = 5; N = 10; % dimension of A

SNR = 20 % SNR in dB

xN = awgn(x,SNR); % Add AWGN to x

A=randn(M,N); % mixing matrix

for ii=1:N % normalize each column

A(:,ii) = A(:,ii)/norm(A(:,ii),2);

end

y=A*xN; % compressed signal

%Reconstruction using CVX (SOCP case)

epsilon = 10^(-SNR) % set epsilon
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Greedy Algorithm Minimum TV

Objectives

1 Introduce some methods for CS reconstruction
• Linear Programming
• Convex Optimization
• Greedy Algorithms
• minimum Total Variant

2 Reconstruction Examples

Notes:

• Tutorial approach is used in this section

• CVX, omp, and L1-magic are necessary to try examples and
exercises.
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Greedy Algorithm Minimum TV

1 Greedy Algorithm

2 Minimum TV
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Greedy Algorithm Minimum TV

Greedy Algorithm

1 Greedy algorithm is a heuristic algorithm
2 contains iterative steps
3 local optimum is selected in each step
4 global optimum is expected at the end of iteration
5 usually faster than analytic methods
6 from greedy point of view, selected solution is optimal
7 but, correct solution is not guaranteed
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Greedy Algorithm Minimum TV

Greedy Algorithm

Finding shortest path:

5

A B

8

7

19

8 8

9

12

12

Greedy solution

Global solution
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Greedy Algorithm Minimum TV

Greedy Algorithm

1 There are many greedy method in CS reconstruction
2 The famous one is the Orthogonal Matching Pursuit (OMP)
3 OMP has many derivation: StOMP, ROMP, etc
4 Matching Pursuit (MP) is considered as basic mechanism of

OMP
5 MP is introduced by Mallat and Zhang in 1993
6 OMP is introduced by Chen et al in 1989 (independently from

MP)
7 There are a lot of CS reconstruction using OMP (because of

speed)
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Greedy Algorithm Minimum TV

Matching Pursuit

1 Introduced by Mallat and Zhang, in their research on
representing signal in time and frequency domain.

2 MP works as follows:
3 y = Ax: y is viewed as a linear combination of each column of

A using coefficients of x
4 Consider a 2× 3 matrix A
5

[
y1

y2

]
=

[
a11 a12 a13

a21 a22 a23

]


x1

x2

x3




=

[
a11

a21

]
x1 +

[
a12

a22

]
x2 +

[
a13

a23

]
x3
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Greedy Algorithm Minimum TV

Matching Pursuit

1 Consider a more actual example:
2 MP works as follows:
3 Let x =

[
−1.2 1 0

]T

4 A =

[
−0.707 0.8 0
0.707 0.6 −1

]

5 y = Ax =

[
−0.707
0.707

]
(−1.2)+

[
0.8
0.6

]
(1)+

[
0
−1

]
(0) =

[
−1.65
−0.25

]

6 Here y =

[
−1.65
−0.25

]
is contributed by each column of A

7 Now, in reconstruction, given y and A
8 MP works reversely by finding each column starting from

largest contribution
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Greedy Algorithm Minimum TV

Matching Pursuit

1 Contribution is calculated by absolute inner product of y and
each column of A

2 g = AT y =



−1.34
1.17
0.25




3 maksimum component λi = max(g)

4 maksimum position : idx = argmaxg
5 As the first component is maximum, and taken as the highest

contribution
6 After taking first component, the residue is calculated

r = y− λiA(:, )

7 the process is repeated from r
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Greedy Algorithm Minimum TV

Residue
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Greedy Algorithm Minimum TV

Matching Pursuit

1 Using MP, the reconstructed signal : xest =



−1.34

1
0




2 The actual solution is actually x =



−1.2

1
0




3 To improve accuracy of MP, an orthogonalization step is
necessary

4 The method of MP is perfected by OMP, by adding this
orthogonalization step.

5 Interestingly, OMP is developed rather independently by Chen
et al. in 1989.
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Greedy Algorithm Minimum TV

Orthogonal Matching Pursuit - OMP

1 OMP has similar step to MP
2 OMP adds orthogonalization step, to ensure that previous

coefficients does not counted for the next iteration.
3 OMP is fast and quite accurate
4 OMP can be used for real or complex valued signals.
5 OMP is modified by many researchers for even a better

algorithm such as: CoSAMP(Needell and Tropp, 2008),
ROMP (Needell and Vershinin, 2010), StOMP (Donoho et al.
2012), etc.

6 Application of OMP for CS is pioneered by Tropp and Gilbert
in 2007.
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Greedy Algorithm Minimum TV

Orthogonal Matching Pursuit - OMP

OMP algorithm
Input : A a M×N matrix, and y a vector of length M
Output : x, a vector of length N.

1 initiate residue vector r0 ←−y, normalize reconstruction
vector B = A, collecting basis matrix Anew ←− 0 counter
i←−1, and temporary reconstruction matrix xrec ←− 0

2 normalize the length of each vector in B:
B(:, j)←− B(:,j)

‖B(:,j)‖2
for j from 1 to N.

3 calculate the contribution vector
w = BT · ri

4 determine the index of maximum value in w. I.e. the location
of maximum
γ = arg(max(w))
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Greedy Algorithm Minimum TV

OMP Algorithm (continued)

5 assign Anew according to γ
Anew(:, γ)←− A(:, γ)

6 Solve the Least Square Problem
min ‖Anew · Lp − y‖2
for Lp

7 calculate Residue
ri = y− Anew · Lp

8 assign xrec = Lp

9 remove the selected basis from B
B←− B\B(:, γ)

10 increase the counter i ←− i + 1
11 if i ≤ M + 1 then repeat from step 3, else assign x←− xrec

and stop.
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Greedy Algorithm Minimum TV

OMP Algorithm

1 Many researchers wrote OMP algorithm in Matlab
2 For example: M Shaban (2018), S.K. Sahoo (2018), Becker

(2016), M. Tummalacherla (2017), Seung Hwan Yoo (2016)
etc.

3 The implementation is often shared in online community, such
as Matlab Exchange, GitHub, etc.

4 In this lecture, we will use S.H. Yoo implementation (availabel
in GitHub : https://github.com/seunghwanyoo/omp).

5 The syntax :
xEst = omp(A, y, k)
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Greedy Algorithm Minimum TV

OMP

1 Solve Let us try to solve the following problem:

2 Given A =

[
−0.707 0.8 0
0.707 0.6 −1

]
and y =

[
1.65
−0.25

]
.

3 Find xest using OMP!

Ans: Matlab Code:
A=[-0.707 0.8 0; 0.707 0.6 -1]; % mixing matrix

y=[1.65 -0.25]; % compressed signal

k = 2; % sparsity of x

tic %start measure recons time

xest = omp(A,y,k) %estimate x using OMP

elapse = toc % stop measuring time
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Greedy Algorithm Minimum TV

Complex valued using OMP

OMP works also for complex valued signal:
1 Let x =

[
1 + i 0 i 0 0 0 0

]

2 Generate random matrix measurement matrix A of size 5× 8
(real of complex)

3 calculate y = Ax
4 from y and y, estimate xest using OMP!

Ans: Matlab Code:
x=[1+i 0 i 0 0 0 0].'; % mixing matrix

A=[-0.707 0.8 0; 0.707 0.6 -1]; % mixing matrix

y=A*x; % compressed signal

k = 2; % sparsity of x

tic % start measure recons time

xest = omp(A,y,k) % estimate x using OMP

elapse = toc % stop measuring time
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Greedy Algorithm Minimum TV

Exercise 5

Repeat again Exercise 3, but instead of CVX, solve it using OMP!

1 Let x =
[
2 0 2 0 0 0 0 0 0 0

]T (N = 10)
2 generate A of size 5× 10 with Gaussian Random distribution
3 Normalize each column in A to unity
4 Calculate y = Ax
5 From A and y, using CVX, estimate the original x
6 Try to reduce dimension of A to 3× 10, can we estimate x?
7 Reduce further dimension of A to 2× 10, can we still estimate

x ?
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Greedy Algorithm Minimum TV

Minimum Total Variance

1 Total Variance is a parameter in data analysis
2 Its the summation of data variance in the collected data
3 At first, it does not related to CS
4 But its technique, currently are used for CS reconstruction
5 Especially in the case of image compression, where image

data is typically low frequency signal (small variance)
6 Let x is the original signal
7 A is the compression matrix
8 y = Ax
9 Reconstruction problem:

min(TV (x)) subject to Ax = y
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Greedy Algorithm Minimum TV

Minimum Total Variance

1 From reconstruction problem:

min(TV (x)) subject to Ax = y

2 The variation of 1D of x is:

var(x) =
1
N

(
(x1 − x̄)2 + (x2 − x̄)2 + · · ·+ (xN − x̄)2)

3 Since Variance is second order statistics, minimum TV
problem is solved by casting it into a SOCP problem.

4 Some package to use minimum TV method for example is
L1-magic

5 L1-magic is Matlab routine written by Romberg and Candes
from Stanford University (USA) :
https://statweb.stanford.edu/ candes/l1magic/

6 After extraction, the file for min TV is tveq_logbarrier

located at folder optimization
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Greedy Algorithm Minimum TV

Minimum Total Variance

1 Syntax for tve_logbarrier:
xEst = tveq_logbarrier(x0, A, At, y)

2 x0 is initial value, can be chosen as x0 = AT y
3 A is sensing matrix
4 At is sensing matrix for large scale problem (ignored if A is

inputed as M × N matrix)
5 y is compressed signal
6 lbtol duality gap threshold, typically a small number (default =

0.001)
7 mu a barrier constant for each iteration (default = 10)
8 slqtol - Tolerance for estimate error; ignored if A is a matrix.

Default = 1e-8.
9 slqmaxiter - Maximum number of iterations; ignored if A is a

matrix. Default = 200.
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Greedy Algorithm Minimum TV

Exercise 5

Solve the following CS reconst using min TV!

1 Let x =
[
2 0 0 0 0 0 0 0 0

]T (N = 9)
2 generate A of size 5× 9 with Gaussian Random distribution
3 Normalize each column in A to unity
4 Calculate y = Ay
5 From A and y, using CVX, estimate the original x
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Greedy Algorithm Minimum TV

Answer to Exercise 5

Ans: Matlab Code:

x=[2 0 0 0 0 0 0 0 0]'; % Original data

N=length(x); M = 4; % dimension of A

A=randn(M,N); % compressed matrix

y = A*x; % compressed signal

x0 = A'*y; % initial value

tic %start measure recons time

xest = tveq_logbarrier(x0,A,[], y, 1e-3, 5, 1e-8, 200)

elapse = toc % stop measuring time
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Reconstruction cases CS Applications

Objectives

1 Introduce some cases in CS reconstruction
2 Intoduce some CS applications

Notes:

• Tutorial approach is used in this section

• CVX, and omp are necessary in most examples.
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Reconstruction cases CS Applications

1 Reconstruction cases

2 CS Applications
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Reconstruction cases CS Applications

Reconstruction cases

There are three most common CS reconstruction cases:
1 time domain sparsity
2 a certain domain sparsity
3 2D CS reconstruction
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Reconstruction cases CS Applications

Time domain sparsity

1 In time domain sparsity, the signal x can be directly compress
using A

2 It is important to carefully and slowly determine the
compression matrix A

3 From A and y, the estimated x is obtained using CS
reconstruction algorithm
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Reconstruction cases CS Applications

Time domain sparsity

Consider a sparse signal of length 11 as follows:

1 what the length of compressed signal do we prefer?
2 what the distribution of compression matrix do we prefer?
3 which reconstruction algorithm do we prefer?
4 Try to simulate our selection in Matlab!
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Reconstruction cases CS Applications

A certain domain sparsity

1 In fact, most of real-life signal is not in time domain sparsity
2 How do we know in which base our signal is sparse?
3 Some clues, such as homogenity, slow or regular pattern

change, may suggest the signal is sparse in frequency domain
4 The following is an example of Dow Jones index values from

1st of August to 28th of September 2018

Figure :
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Reconstruction cases CS Applications

A certain domain sparsity

1 Above is frequency spectrum of the signal (after FFT)
2 After thresholding (e.g vthresh = 4000), we obtain the sparse

signal
3 Thresholding causes perfect reconstruction is not possible
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Reconstruction cases CS Applications

A certain domain sparsity (From Slide 1)

1 Let x of length N is sparse in Ψ, that is

b = Ψx

or
x = Ψ−1b

where b is a sparse signal
2 We compress x, using A, that is

y = Ax =
(
AΨ−1)b

3 Now, instead of viewing y as a compression of x using A,
4 we view y as a compression of b using AΨ−1

5 Therefore, we reconstruct b from y and AΨ−1

6 Then calculate x = Ψ−1b
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Reconstruction cases CS Applications

Example

Let x =[
1.688 1.539 1.263 0.902 0.512 0.152 −0.124 −0.274

]T

1 As the signal slowly change over time, we guess that this
signal is sparse in frequency

2 Either we use FFT (complex valued) or DCT or DST
(real-valued)
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Reconstruction cases CS Applications

Example

Matlab Code:
x = [ 1.688 1.539 1.263 0.902 0.512 0.152 -0.124 -0.274]';

PSI = dct(eye(length(x))); % create N x N base matrix

b = PSI * x % get representation in base PSI

figure; stem(b) % plot b

axis([0 8 -1 3]) % adjust axis

xlabel('k'); ylabel('b') %put x and y label
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Reconstruction cases CS Applications

Example

1 As we observe, x is sparse in DCT base
2 We can continue to compress x

Matlab Code
x = [ 1.688 1.539 1.263 0.902 0.512 0.152 -0.124 -0.274]';

iPSI = idct(eye(length(x))); % prepare inverse base

M = 6; N = length(x); A = randn(M,N)); %compress mtx

y = A*x % compress x using A

At = A*iPSI % prepare for reconstruction

k = 2 % declare sparsity for OMP recons.

bRec = omp(At, y, k) % estimate b.

xrec = iPSI * bRec % transform back to x

figure; plot(xrec, 'r--*'); hold on; %plot reconstr

plot(x, 'b--o'); % plot original

xlabel('n'); ylabel('amplitude')

legend({'reconstr' , 'original'})
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Reconstruction cases CS Applications

Matlab Execution result (We may re-run the program several time
until perfect reconstruction is obtained):

1 Re-run this program for M = 5 and M = 4
2 We can improve compression matrix by normalizing column

length to unity.
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Reconstruction cases CS Applications

Exercise 6

1 Try to compress the Dow Jones Index 1

2 Read the data from Excel File using xlsread command
3 Use DCT as sparsity basis
4 Use compression ratio of 1:2
5 Use OMP as reconstruction algorithm (Try k = 5, 10, etc)
6 Plot the reconstructed signal and original signal in the same

figure.
7 Calculate the MSE value!
8 Try again using CVX!

1Get data from : quotes.wsj.com/index/DJIA/historicalprices or
korediantousman.staff.telkomuniversity.ac.id/CS
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Reconstruction cases CS Applications

Audio Compression

1 Most of audio signal is relatively sparse (or compressible) in
frequency domain

2 A long audio file can be segmented into shorter interval or
segments

3 compression is performed in each segment
4 DFT (complex valued signal) or DCT of DST (real valued

signal) can be used as sparsity basis
5 In next example: piano file compression
6 Get wav file piano.wav 2

2from : korediantousman.staff.telkomuniversity.ac.id/CS, available
during this lecture
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Audio Compression

[name1 path1] = uigetfile('*.wav', 'Pick a file');

[x fs nbits] = wavread([path1 name1]);

temp = length(x); N = min([temp 2000]); % limit length

xshort = x(1:N);

M = round(N/2);

A = randn(M,N);

iPSI = dct(eye(N));

y = A*xshort; % compression

k = M; % sparsity is unknown

At = A * iPSI; % compress mtx in b

brec = omp(At, y, k); %reconstruct for brec

xrec = iPSI * brec; % estimate x

figure; plot(xshort,'b--*'); hold on;

plot(xrec, 'r--o');

legend({'original', 'reconstructed'})
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Reconstruction cases CS Applications

Audio Compression

1 blue color is actual data and red is reconstructed one
2 In implementation, it is necessary to implement compression

matrix and basis matrix so that out of memory problem can
be solved.
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Data Missing Reconstruction

1 Missing data is special case of compression
2 Example:
3 original: x = [2 0 1 3 0 9 0 5]

4 missing data : y = [2 3 9 0]

5 elements at : 2nd, 3rd, 5th, and 8th are missing
6 missing data y can be obtained from Ax
7 this A is called random down-sampling matrix
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Reconstruction cases CS Applications

Data Missing Reconstruction

1 To produce missing data : y = [2 3 9 0]T

2 From: x = [2 0 1 3 0 9 0 5]T

3 Then

A =




1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0




4 Random down-sampling A has only single ’1’ in each row
5 in each row, the element ’1’ appears at position that value is

taken
6 maximum only single ’1’ at each column
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Reconstruction cases CS Applications

Data Missing Reconstruction

In Matlab, an 5× 10 Random down-sampling can be created for
example as follows:

N1 = 10; M1 = 5; % initiate the dimensio of A

permVector1 = randperm(N1); % do random permutation

randPos1 = permVector1(1:M1); % take only first M values

randPos1 = sort(randPos1); % short ascending

Now construct random down-sampling matrix

Atemp1 = zeros(M1, N1);

for ii = 1 : M1

posii = randPos1(ii);

Atemp1(ii,posii) = 1; %assign 1 to correct position

end % for ii = 1 : M1

A = Atemp1; % A is ready as random sampling matrix
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Reconstruction cases CS Applications

Exercise 7

In this exercise, we will remove some data in Dow Jones index
previously using Random Down-sampling matrix A at compression
rate of 1:2.

1 Read the raw data x from EXCEL using xlsread

2 Create compression matrix A with M is about N/2 (use round

function if N is odd)
3 Use DCT as sparsity base (iPSI)
4 Compress x using A
5 Reconstruct b using A and iPSI
6 Either OMP or CVX can be used.
7 Estimate x from b and iPSI
8 Plot both original x and its reconstructed value
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Missing Data Reconstruction

Example of the reconstruction result:
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Image Compression

1 Image is 2D signal
2 2D to 1D conversion is necessary before CS compression
3 after reconstruction, a 1D to 2D conversion is necessary.
4 either 2D to 1D or 1D to 2D conversion can be performed

using reshape command Matlab.
5 Except the binary image, gray or color image is usually sparse

or compressible in frequency domain
6 Binary image is usually sparse in time domain base
7 Method of minimum TV is usually more suitable for image CS

reconstruction.
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Reconstruction cases CS Applications

Image Compression

1 Image is 2D signal
2 2D to 1D conversion is necessary before CS compression
3 after reconstruction, a 1D to 2D conversion is necessary.
4 either 2D to 1D or 1D to 2D conversion can be performed

using reshape command Matlab.
5 Except the binary image, gray or color image is usually sparse

or compressible in frequency domain
6 Binary image is usually sparse in time domain base
7 Method of minimum TV is usually more suitable for image CS

reconstruction.
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Reconstruction cases CS Applications

Image Compression

1 To give an illustration of Image Compression using CS, we
discuss a compression of an ’H’ image of dimension 16× 16

2 Here the compression matrix A is generated using real and
imaginary component of FFT coefficients.

3 Minimum TV from L1-Magic is used as the reconstruction
algorithm
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Reconstruction cases CS Applications

Image Compression

% 1. Create original image : letter H, 16 x 16 pixel

I = zeros(16,16);

I([1:6],[5:12])=ones(6,8); I([11:16],[5:12])=ones(6,8);

%2. display original image;

figure(1);

imagesc(I); colormap(gray); title('original image');

%3. Normalize and remove DC component of signal

I = I/norm(I(:)); %normalized image

I = I - mean(I(:)); %zero mean image

%4. change image to 1-D array /vektor

[n_row,n_col] = size(I); n = n_row;

N = n_row*n_col; % total pixel in original signal

x = reshape(I,N,1);
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Reconstruction cases CS Applications

Image Compression

%5. Prepare compression matrix

f_comp=4; % compression factor

K = N/f_comp; % observation sample

P = randperm(N)';

q = randperm(N/2-1)+1;

OMEGA = q(1:K/2)';

FT = 1/sqrt(N)*fft(eye(N));

A = sqrt(2)*[real(FT(OMEGA,:)); imag(FT(OMEGA,:))];

A = [1/sqrt(N)*ones(1,N); A];

At = [];

%6. performs compression

b = A*x;
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Reconstruction cases CS Applications

Image Compression

% 7. Prepare for reconstruction using min TV

% initial point

x0 = A'*b;

tic;

%reconstruct using total variance method

xp = tveq_logbarrier(x0, A, At, b, 1e-3, 5, 1e-8, 200);

time = toc

%display the reconstructed image

Ip = reshape(xp, n, n);

figure(2);imagesc(Ip);colormap(gray);

title('reconstructed image');
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