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ABSTRACT 

2D DFT Beamspace ESPRIT is  a recently developed closed- 
fo rm algorithm that provides automatically paired azimuth 
and elevation angle estimates of multiple sources incident 
on a uniform rectangular away of antennas. This paper 
shows how the performance of 2D DFT Beamspace ESPRIT 
can be improved via incorporation of null-steering. Null- 
steering provides the means f o r  filtering out sources (inter- 
ferers) in adjacent sectors, while searching for  sources in a 
given spatial sector. Simulation results that document the 
performance improvement gained by null-steering are pre- 
sented. The paper also analyzes the statistical performance 
of 2D DFT Beamspace ESPRIT.  Asymptotic expressions 
for  the variances of the 2D DFT Beamspace ESPRIT DOA 
estimates are obtained, and verified by computer samula- 
tions. The performance analysis results also apply to 2D 
Unitary ESPRIT,  the element space counterpart of 2D DFT 
Beamspace ESPRIT.  

1. INTRODUCTION 

2D DFT Beamspace ESPRIT  is a recently developed al- 
gorithm 11, 21, usable with uniform rectangular arrays 
(URAs), that provides automatically paired azimuth and 
elevation angle estimates of incident signals via a closed- 
form procedure. The algorithm is similar to UCA-ESPRIT 
[3] in that it does not require computationally expensive 
search procedures to obtain the direction-of-arrival (DOA) 
estimates, or ad-hoc pairing procedures to associate source 
bearing estimates relative to each of the array axes. Fur- 
ther, the algorithm does not break down if two (or more) 
sources have a common bearing relative to one of the ar- 
ray axes. 2D DFT Beamspace ESPRIT thus overcomes the 
difficulties that characterize other 2D angle estimation algo- 
rithms. This paper discusses how null-steering can be em- 
ployed to improve the performance of 2D DFT Beamspace 
ESPRIT.  The paper also analyzes the statistical perfor- 
mance of the algorithm. 

2 0  DFT Beamspace ESPRIT can be applied in a re- 
duced dimensional beamspace to perform parallel sector- 
wise searches for sources in different regions of space. This 
is effected by working with a subset of 2D DFT beams that 
have mainlobes in the spatial sector of interest. Several ad- 
vantages such as reduced computational load, and reduced 
sensitivity to errors in the array model, are known to at- 
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tend beamspace processing. We bring forth another ad- 
vantage of beamspace processing with 2D DFT Beamspace 
ESPRIT,  namely the ability to place nulls at the locations 
of sources in neighboring sectors, while searching for sources 
in a given sector. This ability to filter out neighboring out- 
of-band sources improves the quality of the in-band source 
DOA estimates. Section 2 summarizes 2D DFT Beamspace 
ESPRIT,  and Section 3 describes how null-steering can be 
incorporated into the algorithm. The computer simulations 
of Section 5 demonstrate that significant improvements in 
estimator performance can be gained by employing null- 
steering in conjunction with ZD DFT Beamspace ESPRIT.  

The performance analysis of 2D DFT Beamspace ES- 
P R I T  presented in Section 4 parallels the analysis of UCA- 
ESPRIT [3]. 2D DFT Beamspace ESPRIT  provides auto- 
matically paired DOA estimates via the eigenvalues of a 
matrix. The analysis yields expressions for the variances 
of the eigenvalues, and thus the variances of the DOA es- 
timates. The performance analysis results also apply to 
2D Unitary ESPRIT [4], the element space counterpart of 
2 0  DFT Beamspace ESPRIT.  The computer simulations of 
Section 5 show that the theoretical expressions for the DOA 
estimator variances are accurate; the empirical results are 
seen to closely follow the theoretical predictions. 

2. SUMMARY OF 2D DFT BEAMSPACE 
ESPRIT 

The array geometry involves a URA of M x N sensors 
located in the zy plane, with the array centroid located 
at the origin. The array elements parallel to the z axis 
are spaced a distance A= apart, and those parallel to the 
y axis are spaced a distance A, apart. The DOA of a 
source is specified by the pair (u , v ) ,  where U = sinOcos4 
and v = sinBsin4 are the direction cosines with respect 
to the z and y axes, respectively. When a narrowband 
source (of wavelength A) impinges on the array from the 
direction ( U ,  U ) ,  the phase shifts between sucessive elements 
along the x and y axes are p = 27ryu and v = 27r%v, 
respectively. Note that p and v lie in the range [-n,n] 
when A, = A, = X/2. The array output is modeled as 
x(t) = As(t)+n(t), where x(t) is the M N  vector formed by 
stacking the columns of the URA outputs, A is the M N  x d 
DOA matrix (assuming d incident sources), s ( t )  is the vec- 
tor of signal complex envelopes at the origin, and n(t) is 
the stacked noise vector. The columns of A have the form 
vec [a~(p)as(v)] ,  where .e.(.) denotes the column stack- 



ing operator, and these relationships. Row i of these matrices give the rela- 
tionship between the ith and i + 1st beams (modulo M). 

is the centro-Hermitian version of the response vector of a 
M element uniform linear array. The 2D DFT Beamspace 
ESPRIT algorithm is summarized below, and is followed 
by a brief explanation of pertinent points. In the summary, 
the symbol @ denotes the Kronecker matrix product. 

1. Average over K available snapshots to form the sample 
K covariance matrix & = j$ xkrl x(k)xH(k) .  

H 
2. Compute R = Re{FHRxF}, where FN = W(”) E ,  @ 

Wk:)H. A 2D DFT expedites this computation. The 
matrices Wk:’ and Wg’ defined in ( 2 )  are chosen to 
provide coverage of the desired sector of (p, v) space. 

3. Perform a real-valued eigenvalue decomposition (EVD) 
of R and obtain an estimate of the number of sources, 
d,  in the yctor. Obtain the beamspace signal subspace 
estimate S via the d “largest” eigenvectors of R. 

4. Obtain 8, and 8, as the least squares (or total least 
squares) solutions to the real-valued systems of equa- 
tions rPlS*,, = l?,& and I.ylS\II, = r,&. The l?(.) 
matrices are defined in(4). 

5 .  Perform an EVD of 8 = 8, + j 8 , .  The eigenvalues 
of 8 are Ai = &i + j&,  where &, = tan(fi,/2) and 
& = tan(fi*/2). The direction cosine estimates are thus 
iii = A/(?rA,) tan-’(&), and iji = A/(7rAy) tan-’(&). 

The beamforming matrix Fn in step 2 synthesizes B,B, 
2D DFT beams. B, consecutive beams (beginning at beam 
m E [0, M - 11) are formed along p ,  and By consecutive 
beams (beginning at beam n E (0, N - 11) are formed along 
v. The 1D DFT beamforming matrices 

For reduced dimensional processing, form the submatrices 

ri = JLZLl rbJB1: (m)T r2 = J 6 L 1  Jhy)T 
r4 = ~ ( n )  

r 3  = Jg:-l r%JB, B,-1 r%Jk;T (3) 

where JLZ) denotes a selection matrix that picks out B, 
consecutive rows from the matrix it operates on (beginning 
with row m). Note again that the last row (row M - 1)  is 
followed by the first row (row 0). The matrices needed for 
step 4 are constructed as follows: 

rrl = IB,, rl rMZ = IB, ~9 r2 
rvl = r3 8 IB, ry2 = r4 8 IE, (4) 

2D Unitary ESPRIT 14, 21 is similar to 2D DFT Beamspace 
ESPRIT except that it employs a different (sparse) t rans  
formation matrix FH and, therefore, also different selection 
matrices instead of the r(.) of step 4, and that these ma- 
trices have full dimension (reduced dimensional beamspace 
processing is not possible). Due to these similarites, the per- 
formance analvsis results develoDed in Section 4 are easilv 

. .  
WE) = [aN(kNn) iaN(kN(n+l)) : ... : a ~ ( k ~ ( n + B , - l ) ) ]  

(2) 
where kM = (27r/M) and kN = (2?r/N), are used to con- 
struct the 2D DFT beamforming matrix FH. The rows of 

Wk:’ are scaled M point DFT weight vectors correspond- 
ing to bins m ,  m f 1 , .  . . , m + B, - 1 (computed modulo 
M). The rows of Wg;” have a similar interpretation. The 
beamformer FH thus narrows the scope of the search for 
sources to the spatial sector roughly specified by 2nm/M _< 
p 5 2x(m + B, - l ) / M ,  27rn/N 5 v 5 2 n ( n  + Bv - l ) / N .  
Note also that a steering angle y > 7r (along p or v) is 
identical to the steering angle y - 27r. 

The equations in step 4 follow from a relationship be- 
tween any two adjacent 2D DFT beams (adjacency in p or 
v). The matrices and I?& defined below summarize 

H 

3. INCORPORATING NULL-STEERING INTO 
2D DFT BEAMSPACE ESPRIT 

As described above, 2D DFT Beamspace ESPRIT allows for 
sectorization of the search space via 2D DFT beamforming, 
and provides closed-form DOA estimates of sources in the 
sector of interest. To illustrate, consider an 8 x 8 URA. 
2D DFT Beamspace ESPRIT could employ nine beams (a 
3 x 3 subset of 2D DFT beams), with nine such overlapping 
beam sets spannning the entire arrival angle space. The 
algorithm is computationally efficient and requires only a 
real-valued 9 x 9 EVD per sector (as opposed to a 64 x 64 
EVD for element-space operation). 

The maximum number of sources that 2D DFT 
Beamspace ESPRIT can resolve per sector is equal to the 
number of independent equations in step 4 of the algorithm 
summary. The algorithm can thus resolve a maximum of 
six sources per sector in the nine beam example presented 
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above. This figure of six sources per sector may be o p  
timistic, since sources from adjacent sectors can leak into 
the current one (due to the high sidelobes of the 2D DFT 
beams), thereby increasing the effective number of sources 
in the current sector. The development below shows how 
null-steering can be employed to alleviate the problem of 
source leakage from adjacent sectors into the current one. 
A simple procedure for steering upto two independent nulls 
in the directions of sources (interferers) in adjacent sectors 
is described. 

With the 1D beamformers as defined in (2), the 2D DFT 
beam steered to (p, = k ~ m ,  v, = k ~ n )  has the response 

sin [4f ( p  - kMm)]  

sin [ $ ( p  - ~cMm)] 

sin [+ (v - kivn)] 

sin [ 3 (v - knrn)] 
bm,n(P, 4 = (5) 

This pattern has a null if p = kMi, i E [0, M - 11, or v = 
k ~ j ,  j E [O,N - 11, except that it has a peak if ( p , v )  = 
( k ~ m , k ~ n ) .  A 2D DFT beam steered to (ps = k M m  + 
a,v, = k ~ n  + p) can be generated just as easily as the 
beam of (5). The resulting beampattern 

bmyn(p, 

- sin [ + ( p  - k M m  - a)]  sin [ 9 (v - k N n  - p)] 
= sin [i z p  ( - k M m  - a)] sin 14 (v - k N n  - p)] 

(6) 
has a null if p = k ~ i + a ,  i E [0, M -  I] or v = k j v j + P ,  j E 
[O,  N - 11, except that it has a peak if (p ,  v) = ( k ~ m  + 
a , k ~ n + p ) .  Now a E ( - r / M , r / M )  and p E ( - T / N , K / N )  
can be chosen so as to provide nulls at the locations of 
two sources in adjoining sectors (a  provides a null at the 
p location of the first interferer, and /3 provides a null at 
the v location of the second). Due to the breakdown of the 
search space into sectors, information on the locations of 
sources in adjacent sectors is available when searching for 
sources in the next sector. Appropriate values for the angle 
shifts CY and p are thus available. 

Null-steering as described above is easily incorporated 
into 2D DFT Beamspace ESPRIT. Given values for a and 
p, we form the 1D DFT beamforming matrices 

WB, = diag {aM(a)}WLz) 

w$J = diag {aN(p)}W$; (7) 

where aM and W are defined in (1) and (2), respectively. 
The matrices of (7) synthesize 2D DFT beams with nulls 
at the desired locations, and are employed in step 2 of the 
algorithm summary. The resulting beampatterns (6) are 
spatially shifted versions of the original beams (5). The 
beamspace relationships described by the I?(,) matrices in 
step 4 of the algorithm thus hold provided the source DOA 
is considered to be ( p  - a, v - p). Thus in the final stage 
(step 5 ) ,  the algorithm provides estimates TI and F, where 
the true direction cosine estimates are ti = E + a and U = 
T+p. The modifications needed to incorporate null-steering 
into 2 0  DFT Beamspace ESPRIT are summarized below. 

e Choose a and p to provide nulls at locations of sources 
(interferers) in adjacent sectors. 

e Form the 1D DFT beamforming matrices of (7) and 
employ them in step 2 of 2D DFT Beamspace ESPRIT. 

e The source DOAs are given by p = jI+a and v = T+p, 
where jZ and i? are the estimates obtained from step 5 
of 2D DFT Beamspace ESPRIT. 

4. PERFORMANCE ANALYSIS RESULTS 
The analysis of 2D DFT Beamspace ESPRIT presented be- 
low follows the analysis of UCA-ESPRIT [3]. The develop 
ment of 2D DFT Beamspace ESPRIT  shows that the error 
free matrix 9 = GP + j9, has the spectral decomposition 
9 = T-'(n2, + jn,)T, where T is real-valued. Thus 92, 
and 9, have a common set of real-valued eigenvectors given 
by the columns of T-l. OP + jn, is the diagonal matrix 
whose elements are the eigenvalues A, = w, + j6 , .  In the 
following developments, the left and right eigenvectors of 
9 are denoted q: and xz, respectively. A superscript e de- 
notes the error in an estimate, and a superscript $ denotes 
the MoorePenrose pseudo-inverae. The statistics of the sig- 
nal eigenvectors i, (columns of S )  are required for the anal- 
ysis. Lemma 1 drawn from [3] gives these statistics. The 
columns of the matrix G in Lemma 1 are the noise eigen- 
vectors of R, l , ,  1 5 i 5 d denote the d largest eigenvalues 
(assumed distinct) of R, and U is the noise power (the noise 
is assumed to be Gaussian, and spatially white). 

Lemma 1 The signal eigenvector estimation errors s: are 
asymptotically (for large number of snapshots K )  zero mean 
with covarzance matrzces gzven by  

COV(S~,  ~ j " )  = E [stsj"'] = 
r 

s,s:+ 1 lZu GGT6,, 
K r=l 4=1 2(1, - U)Z 

wz = Im{FHRxF}s , .  

The following theorem gives asymptotic expressions for the 
variances/covariance of the 2 0  DFT Beamspace ESPRIT 
estimators ~2% and 6%. The fact that L2, and 6, are concen- 
trated about their true values is used to obtain approximate 
expressions for the variances of the direction cosine estima- 
tors 0, and 8,. The theorem can be proved along the lines 
of a similar theorem in [3]. 

Theorepl 1 The 2D DFT Beamspace ESPRIT estimators 
& and 6, are asymptotacally unbiased. Asymptotzc expres- 
s o n s  for their variances/covariance are as follows: 

(8) 
T Var(&) = ~ X , R H ~ ~ % R  

Var(&) = & H , c x , ~  

cow oZ, 8,) = a:' H,  CY,^, where 
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Figure 1: RMS estimation error for source 1 
The direction cosine estimator variances are given by 

Vur (ai) NN Var (Gi) (9) 

5. RESULTS OF COMPUTER SIMULATIONS 
Results of computer simulations that demonstrate the effi- 
cacy of null-steering with 2D DFT Beamspace ESPRIT are 
presented below. Simulation results that verify the theo- 
retical performance analysis results are also presented. All 
simulations employ an 8 x 8 URA (i. e. , M = N = 8) with 
an interelement spacing of half a wavelength in both z and 
y directions. The signal to noise ratios (SNR's) referred 
to in the following developments are per source per array 
element. The rms error (RMSE) is employed as the perfor- 
mance metric. The RMSE of the i-th source is computed 
as follows: 

where ( i l i k , G i k )  are the coordinate estimates of the i-th 
source in the k-th trial, and T is the total number of trials. 

Efficacy of Null-Steering 
The source scenario includes four uncorrelated sources lo- 
cated at  (~1,211) = (-1/8, -1/8), (212,212) = (1/8,1/8), 
(213,213) = (-5/8,0), and (2~4,214) = (0,5/8), where ui and 
wj are the direction cosines of the i-th source relative to the 
x and y axes, respectively. We consider a 3 x 3 beam set 
of nine standard DFT beams, and a 3 x 3 set of shifted 
DFT beams that steer nulls in the directions of interferers. 
The standard DFT beam set is centered at ( U ,  v) = (0,O). 
Sources 1 and 2 lie within the main-lobes of this beam set, 
and are considered in-band sources. Sources 3 and 4 (out- 
of-band sources) lie in adjacent sectors and are positioned at 
the first side-lobe peaks of the closest beams of the standard 

....... Standard DFT beam set 

Shifted DFT beam set (null-steering) 0.04 

0.0351 i 
2 0.025 

0 O o 2 L  015 

0 01 I \  -I 
0.W5 10 20 30 40 50 60 70 60 90 

Number of snapshots 

Figure 2: RMS estimation error for source 2 

DFT beam set. These sources leak into the current sector, 
effectively increasing the number of sources in the sector to 
four. The shifted DFT beam set is chosen to provide nulls 
at the locations of sources 3 and 4. Accordingly, this beam 
set is centered at (U,  v) = (1/8, -1/8) (the corresponding 
angle shifts referred to in the null-steering development are 
a = 7r/8 and ,O = -n/8). 

Simulations were performed to assess the quality of the 
2 0  DFT Beamspace ESPRIT estimates of the in-band 
sources (with and without null-steering,) as the number 
of snapshots K was varied. In the simulations, the in- 
band sources had SNRs of -5dB each, while the out-of- 
band sources had SNRs of OdB each. The sensor noise was 
complex-Gaussian distributed, and was spatially and tem- 
porally white. Sample estimator statistics were obtained 
using T = 500 independent trials. Fig. 1 shows that while 
employing the standard DFT beam set, the RMSE of source 
1 rises dramatically if the number of snapshots drops be- 
low 40. In contrast, the figure shows that low RMSEs are 
achieved if null-steering is employed, even if the number of 
snapshots drops as low as 10. Examination of Fig. 2 shows 
that similar results hold for the second in-band source. The 
simulations thus show that null-steering greatly enhances 
estimator performance in low information to noise scenar- 
ios. We also note that incorporation of null-steering can 
enable 2 0  DFT Beamspace ESPRIT to operate in a lower 
dimensional beamspace (leading to reduced computational 
demands) than would otherwise be possible. This is be- 
cause sources in adjacent sectors can be filtered out, thereby 
keeping down the effective number of sources in the sector 
of interest. 

Verification of Performance Analysis Results 
The source scenario consists of d = 3 equi-powered, uncorre- 
lated sources located at (u1,vl) = (O,O),  (u2 ,2 r2 )  = (l/S, 0), 
and (213,113) = (O,l/S). Sources 1 and 2 are separated by 
a half-beamwidth, i. e., half the Rayleigh resolution limit, 
as are sources 2 and 3. Sources 1 and 2 have the same 
21 coordinate, while sources 1 and 3 have the same U co- 
ordinate. K = 64 snapshots were employed in the simu- 
lations, and sample performance statistics were computed 
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Figure 4: Performance curves for source 2. 
from T = 1000 independent trials. The sensor noise was 
spatially and temporally white Gaussian noise, as in the 
previous simulation example. 

The simulations employed a standard 3 x 3 2D DFT beam 
set centered at (U, TI) = (0,O). The simulations investigated 
the performance of 2D DFT Beamspace ESPRIT and 2D 
Unitary ESPRIT as a function of SNR. The RMSE’s of the 
2D DFT Beamspace ESPRIT estimates and the 2D Uni- 
tary ESPRIT estimates for sources 1, 2, and 3 are plotted 
together with the theoretical performance curves in Figures 
3,4, and 5, respectively. The ultimate performance dictated 
by the Cramer Rao bound is also depicted. The figures show 
that the empirical RMSEs closely follow the theoretical pre- 
dictions, except for slight deviations at low SNRs. We also 
see that the performance of 2D DFT Beamspace ESPRIT is 
comparable to that of 2D Unitary ESPRIT. However, the 
computational demands of 2D DFT Beamspace ESPRIT 
are significantly lower than those of 2D Unitary ESPRIT. 
The former is a beamspace algorithm requiring 9 x 9 EVDs 
in the above source scenario, whereas the latter is an ele- 
ment space algorithm that requires 64 x 64 EVDs in the 
same source scenario. 
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Figure 5: Performance curves for source 3. 
6. SUMMARY 

2D DFT Beamspace ESPRIT is a recently developed alg& 
rithm [l] that provides automatically paired azimuth and el- 
evation angle estimates of signals incident on a uniform rect- 
angular antenna array via a closed-form procedure. This 
paper describes how the performance of 2D DFT Beamspace 
ESPRIT can be improved by incorporating null-steering 
into the algorithm. Independent nulls can be steered in the 
directions of two sources outside the spatial sector of in- 
terest, thereby improving the quality of the in-band source 
estimates. The paper also analyzes the statistical perfor- 
mance of 2D DFT Beamspace ESPRIT. Asympotic expres- 
sions for the 2D DFT Beamspace ESPRIT DOA estima- 
tor variances are obtained and verified by computer simu- 
lations. 
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