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Computationally Efficient Angle Estimation 
for Signals with Known Waveforms 
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Abstract-This paper presents a large sample decoupled maxi- 
mum likelihood (DEML) angle estimator for uncorrelated nar- 
rowband plane waves with known waveforms and unkaown 
amplitudes arriving at a sensor array in the presence of unknown 
and arbitrary spatially colored noise. The DEML estimator de- 
couples the multidimensional problem of the exact ML estimator 
to a set of l-D problems and, hence, is computationally ef- 
ficient. We shall derive the asymptotic statistical performance 
of the DEML estimator and compare the performance with its 
C”6-Rao bound (CRB), Le., the best possible performance for 
the class of asymptotically unbiased estimators. We will show that 
the DEML estimator is asymptotically statistically efllaent for 
uncorrelated signals with known waveforms. We will also show 
that for moderately correlated signals with known waveforms, 
the DEML estimator is no longer a large sample maximum 
likelihood (MI,) estimator, but the DEML estimator may sti l l  
be used for angle estimation, and the performance degradation 
relative to the CRB is small. We shall show that the DEML 
estimator can also be used to estimate the arrival angles of desired 
signals with known waveforms in the presence of interfering or 
jamming signals by modeling the interfering or jamming signals 
as random pmcesses with an unknown spatial covariance matrix. 
Finally, several numerical examples showing the performance of 
the DEML estimator are presented in this paper. 

I. INTRODUCTION 

ANY high-resolution algorithms for estimating the an- M gles of arrival (AOA’s) of signals incident on an array 
of sensors have been devised in the past few decades. These 
research activities are mainly motivated by military applica- 
tions including the source localization applications in radar 
and sonar. In these conventional applications, the incident 
signals are usually unknown. The subspace-based algorithms, 
such as MUSIC [l] and ESPRIT [2], are developed without 
considering any knowledge of the incident signals, except for 
some general statistical properties such as the second-order 
ergodicity. Conditional or unconditional estimators [3] are also 
devised for such applications. The unconditional estimators, 
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such as the unconditional maximum likelihood (ML) estima- 
tors [3]-[5], model the unknown signals as random processes. 
The conditional estimators, such as the conditional ML es- 
timators [6]-[lo], model the unknown signals as unknown 
deterministic parameters. 

As the political environment changes, however, more at- 
tention is now being paid to applying array signal processing 
techniques to civilian applications including friendly commu- 
nications. For example, an antenna array may be used as 
a receiver in a communication system to enhance its com- 
munications capability. A distinguishing feature of friendly 
communications is that certain a priori knowledge on the 
impinging signals is available to its receiver. This a priori 
information may or may not be explicit. For example, in a 
digital communication system, the modulation format of the 
transmitted signals is known to the receiver, although the 
actual transmitted symbol stream is unknown. In a packet radio 
communication system or a mobile communication system, a 
known preamble may be added to the message for training 
purposes [11]-[13]. Such extra information may be exploited 
to enhance the accuracy of the AOA estimates and may be used 
to simplify the computational complexity of the estimation 
algorithms. Several algorithms have been developed to exploit 
such extra information including, for example, the special 
features of cyclostationary signals [ 141-[ 161 and constant 
modulus signals [17]. Exact ML estimators for signals with 
known waveforms in the presence of spatially white noise are 
also considered [ 181. 

The purpose of this paper is to present a large sample 
decoupled maximum likelihood (DEML) angle estimator for 
uncorrelated narrowband plane waves with known waveforms 
and unknown amplitudes arriving at a sensor array in the 
presence of unknown and arbitrary spatially colored noise. The 
DEML estimator decouples the multidimensional problem of 
the exact ML estimator to a set of 1-D problems and, hence, 
is computationally efficient. We shall derive the asymptotic 
statistical performance of the DEML estimator and compare 
the performance with its Cram&-Rao bound (CRB), i.e., 
the best possible performance for the class of asymptotically 
unbiased estimators. We shall show that the DEML estimator 
is asymptotically statistically efficient for uncorrelated signals 
with known waveforms, which occur often in communication 
systems. We shall show that for moderately correlated signals 
with known waveforms, the DEML estimator is no longer 
a large sample maximum likelihood (ML) estimator, but the 
DEML estimator may still be used for angle estimation, and the 
performance degradation relative to the CRJ3 is small. We shall 
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show that the DEML estimator can also be used to estimate the 
arrival angles of desired signals with known waveforms in the 
presence of interfering or jamming signals by modeling the 
interfering or jamming signals as random processes with an 
unknown spatial covariance matrix. Finally, several numerical 
examples showing the performance of the DEML estimator 
are presented in this paper. 

The rest of this paper is organized as follows. In Section 11, 
we formulate the problem of interest. In Section 111, we derive 
the computationally efficient large sample DEML estimator. In 
Section IV, we present the asymptotic statistical performance 
of the DEML estimator and compare the performance with its 
CRB. In Section V, we provide several numerical examples 
showing the performance of the estimator. Finally, Section VI 
contains our conclusions. 

1 

11. PROBLEM FORMULATION 
Consider the estimation of the AOA’s of K narrowband 

plane waves impinging on an array of M sensors. The received 
data vector may be modeled as 

x(t) = A(B)s(t) + n(t)  (1) 

where x ( t )  E C M x l  is the array output vector, s ( t )  E 
C K x l  is the incident signal vector, and n( t )  E C M x l  is 
the additive noise vector. The M x K matrix A(8) is the 
direction matrix corresponding to the parameter vector 8 = 
[el, 02 ,  - . , B K ] ~  E RKX ’, where ( . ) T  denotes the transpose. 
The columns of the matrix A(8) are the direction vectors 
a(&), k = 1 , 2 , .  . . , K. The waveforms of s ( t )  are assumed 
to be known. The amplitudes of s ( t )  are assumed to be 
unknown. (We have considered both cases of known and 
unknown amplitudes of s ( t )  in [19].) 

The array is assumed to be free of rank-1 ambiguity, i.e. 

a(&) = &a(@,) e di  = B j  (2) 

where cy is a nonzero scalar. Note that this unambiguous 
manifold assumption does not require K < M. We shall show 
herein that for signals with known waveforms, we can avoid 
the assumption that K < M, which is necessary for signals 
with unknown waveforms. 

The noise vector n(t) is assumed to be a circularly sym- 
metric complex Gaussian random vector with zero-mean and 
arbitrary covariance matrix Q and is sampled to be temporally 
white, i.e. 

E[n(ti)n*(t,)l = Q&,j (3) 

where (.)* denotes the complex conjugate transpose, and 
& , j  is the Kronecker delta. The unknown covariance matrix 
Q models both thermal noise caused by the sensor output 
receivers and all other outside radio interference and jamming. 
Note that when the incident signals have unknown waveforms 
and are assumed to be either random processes or unknown 
deterministic signals, the problem of AOA estimation is ill 
defined if Q is unknown. The AOA estimators devised for 
signals with unknown waveforms may assume, for example, 
that Q is known, such as in MUSIC and ESPRIT [l], [2], or 

that Q = u21 with u2 unknown, such as in MODE [20], or 
that Q is block diagonal [21], [22]. 

The kth incident signal sk ( t ) ,  i.e., the kth component of the 
signal vector s ( t ) ,  may be written as 

S k ( t )  = YkYk(t), = 1 , 2 , . . . ,  K (4) 

where y k ( t )  denotes the known signal waveform, and yk 
denotes the complex amplitude or gain of the signal and is 
unknown. In matrix form, the signal model may be written as 

s ( t )  = rY(t) ( 5 )  

where l? = diag [n, 7 2 ,  . . .  , Y K ]  and y ( t )  = 
[ y ~  ( t  ) , y2 (t  ) . . . , y~ (t ) ]  T .  The incident signals are assumed 
to be quasistationary [23], and the “covariance matrix” of the 
incident signals s ( t )  is defined as 

- N  

(6) 
1 

~ + m  N R,, = lim - s(tn)s*(tn).  
n=l 

The “covariance matrix” %, of the known waveforms y ( t )  is 
similarly defined. For uncorrelated incident signals, both R, 
and R,, will become diagonal. When the incident signals are 
not coherent, i.e., not completely correlated with each other, 
the number of signals is known since we even know their 
waveforms. We consider herein the case where the incident 
signals are not completely correlated. Finally, we assume that 
the signal and noise vectors are uncorrelated, i.e. 

with probability 1 (w.P. 1.). (7) 

The problem of interest herein is to determine the 
AOA’s o k  and the unknown amplitudes ~k (if of inter- 
est) k = 1: 2, ... , K from N independent data samples 
X ( t l ) ,  x(tz), . . . 1 x(t lv) .  

111. DECOUPLED MAXIMUM LIKELIHOOD (DEML) ESTIMATOR 
We consider below a large sample ML estimator for { e , }  

and {yk}. It is easy to show that an exact ML estimator 
requires a multidimensional search over the parameter space 
and is computationally burdensome. We shall show below that 
when the incident signals are uncorrelated, a large sample 
DEML estimator exists and is asymptotically statistically 
efficient. The DEML estimator determines the AOA and the 
amplitude (if of interest) of each incident signal separately. 
The DEML estimator thus reduces the K-dimensional search 
problem to K 1-D search problems for an arbitrary sensor 
array. For the special case of uniform linear arrays, we will 
show that we can also avoid the 1-D search problem by 
devising a large sample ML algorithm to compute the pa- 
rameter estimates. For correlated incident signals, the DEML 
estimator is no longer asymptotically statistically efficient. We 
shall show in Section V with numerical examples that the 
DEML estimator may still be used to estimate the angles and 
amplitudes of moderately correlated incident signals without 
much performance degradation. 
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A. Arbitrary Arrays 

x( tn) ,  
constant) 

The log-likelihood function of the array output vectors 
n = 1,2, e .  , N is proportional to (within an additive 

[x(tn) - By(tn)]* 

where I e 1 denotes the determinant of a matrix, and 

B = A r  (8) 

where we have dropped the argument 0 of A(0) for conve- 
nience. 

Consider first the estimate of Q and the unstructured esti- 
mate of B. It is easy to show that 

n=l 

and B may be obtained by minimizing the following cost 
function 

Let 
- N  

and 
- N  

n=l 

Let Rzx be defined similarly as Ryy. Then, let [24] 

l N  
G = - E [x(tn) - B~(tn)] [X(tn) - B~(tn)]* (13) 

(14) 

n=l 
N 

= R,, - B & ~  - %,B* + B&,B* 
= [B - a. R-1]hy[B - R-1]* YX Y Y  Y" YY 

+a,, - %,R;iiiy,. (15) 

Since the matrix hy is positive definite and the second and 
third terms in (15) do not depend on B, it follows that 

G 2 GIB=& (16) 

B = R;,Rii. (17) 

where 
A A , .  

Since the whole sample ccpuiance matrix G is minimized, 
the unstructured estimate B of B in (17) will minimize any 
nondecreasing function' of G including the determinant of G, 

A function h ( G )  is a nondecreasing function of positive definite G if for 
any nonnegative definite AG,  h(G + A G )  2 h(G), and the equality holds 
only for A G  = 0 [24]. 

which is F in (10). It is easy to see that B is a consistent 
estimate of B. 

By using (17) with (9), the Q may be rewritten as I 

Q = R,, - %,RRi;&,. (18) 

Let us now consider the structure of B. The cost function 
It is easy to see that Q is a consistent estimate of Q. 

in (10) may be rewritten as 

F = lRxx - - %,B* + B&,B*~ (19) 

= lRzx - iiyyB* + (B - B ) i i y y ( ~  - B)*I (20) 

= IQ1 11 + Q-l(B - B ) h Y ( B  - B)*l. (21) 

The ML estimates of the angles 81, and the gains Tk, k = 
1 , 2 , . . . ,  K may be obtained by minimizing F in (21) or 
equivalently In F. 
Theorem I :  Minimizing In F, with F defined in (21), is 

asymptotically equivalent to minimizing 

F2 = t r  [ES,,(B - B)*Q-l(B - B)]. (22) 

0 
Note that minimizing F2 in (22) also requires a multidi- 

mensional search over the parameter space. However, when 
the incident signals are uncorrelated with each other, which 
is quite common in communication systems, R,,,, in (22) is 
a diagonal matrix. The decoupled DEML estimator is then 
obtained as a large sample approximation of the exact ML 
estimator. For this case, the minimization in (22) is decoupled 

F3 = min[bk - rka(8k)]*Q-1[bk - Tka(8 k)] ,  

Pro03 The proof can be found in [19]. 

as 

@ E  >Yk 

(23) k = 1 , 2 , . . . ,  K 

where bk denotes the kth column of B, and a(&) denotes the 
kth column of A(0). 

Thus, for uncorrelated incident signals, the DEML estimates 
of the gains 'yk and the angles Ok, k = 1 , 2 , .  . . , K may be 
easily determined as 

and 

= min b;Q-'/Zpl ak Q-1/2bk (26) 
e h  

where 

& = Q-ll2ak, (27) 

where, for simplicity, we have dropped the argument of a(&) 
and Pik = I - P&k with 

Pak = &(%;&)-'ai. (28) 

Since bk and Q are consistent estimates of bk and Q, 
respectively, when N tends to infinity, e k  converges to the 
maximum of 
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where we have used 8 ,  to denote the true value of the lcth 
incident angle in order to distinguish it from the indeterminate 
Ok. By assumption (2) and the Cauchy-Schwarz inequality, the 
absolute maximum of (25) is given by d k  = 0,. This result 
shows that the O k  obtained from (25) or (26) is a consistent 
estimate of the kth incident angle. It is then easy to see that 
+k is also a consistent estimate of yk. 

The DEML estimator for signals with unknown amplitudes 
may be summarized ,as follows: 

Step I: Compute bk, IC = 1 , 2 , . . . ,  K and Q with (17) 
and (18), respectively. 

Step 2: Determine +k (if of interest) and IC = 
1,2,  . . . , K with (24) and (26), respectively. 

We remark that when the incident signals are uncorrelated 
with each other, since {Ok,  T k }  are consistent and large sample 
realizations of the ML estimates, it follows that { e k ,  T k }  are 
asymptotically statistically efficient, according to the general 
properties of ML estimators [25]. This result will be confirmed 
again by the performance analysis in Section IV. When the 
incident signals are correlated with each other, the DEML esti- 
mator is no longer a large sample ML estimator, but the DEML 
estimator may still be used for angle estimation. In Section V, 
we will confirm that for moderately correlated incident signals, 
the DEML estimator is no longer asymptotically statistically 
efficient, but the performance degradation relative to the CRB 
is small. 

B. Uniform Linear Arrays 
For a linear array of uniformly spaced identical sensors, i.e., 

a uniform linear array (ULA), the A(0) in (1) becomes a Van- 
dermonde matrix, and its lcth column a ( O k ) ,  k = 1,2, . . . , K 
becomes 

where 

q k  = exp ( j  sin o r ) ,  

with S denoting the spacing between two adjacent sensors of 
the ULA, X denoting the wavelength of the incident signals, 
and O k  defined relative to the array normal. 

For a ULA and an arbitrary Q, the minimization of the 
right-hand side of (26) is equivalent to solving for the roots 
of a polynomial of order 2(M - 1). Compared with the exact 
iterative ML methods in [ 181, this DEML method requires the 
computation of a single iteration of the exact ML method. 

For a ULA and an arbitrary Q, the minimization of the right- 
hand side of (26) may be further simplified with the following 
noniterative method that is asymptotically equivalent to the 
DEML method and yet avoids solving for the roots of a 
high-order polynomial. We note that each function in (26) 
may be reparameterized in terms of the coefficients Ck = 
[ c o ~ ,  lc = 1 , 2 , . . . ,  K of a first-order polynomial 
defined as 

Let c k  be an M x ( M  - 1) matrix defined as 

O I  

c0k 

’ * ’  clk ”‘ COk 

c; = (33) 

Since rank (Ck) = M -Al and C;ak = 0, we have rank 
(Q1/2Ck) = M - 1 and (Q1/2Ck)*Q-1/2ak = 0. These two 
observations imply that the columns of Q1/2ck span the null 
space of a; = aiQ-1/2. Thus 

(34) 

Then, the right-hand side of (26) may be reparameterized as a 
function of the polynomial coefficients c k  and 

~k = min[c,(c;Qc,)-lc;bkb;]. (35) 
ck 

From (11) and (12), we have R,, - R,, = 0(1/-) 
and Ryy - Ryy = O ( l / n ) ,  where 0(1/-) denotes the 
(asymptotic) order, in the root-mean-square sense, of a random 
variable. Using first-order approximations with (17), we have 
B - B = 0(1/n) or bk - bk = 0(1/n) [26]. Since 
C;bk = 0 and bk - b k  = 0 ( 1 / n ) ,  we have 

Cibk = O ( l / J N ) .  (36) 

Then, the Ck in the C;QCk in (35) may be replaced by a 
consistent estimate without affecting the asymptotic statistical 
efficiency of the minimizer of (35). Hence, for a uniform 
linear array, we can first determine an initial ^estimate of 
ck, lc = 1,2, .  1 .  , K ,  by minimizing tr (C;bkb;Ck]. This 
estimate of c k  is consistent since bk is a consistent estimate 
of bk. We then determine an efficient estimate of Ck using 
(35) with c k  in (C;Qck)-’ replaced by its consistent 
estimate formed from the initial estimate of C k .  This algorithm 
avoids solving for the roots of a high-order polynomial and is 
computationally efficient for determining the asymptotically 
statistically efficient estimates of the angles 6 k .  In order to 
obtain a meaningful solution to these quadratic minimizations, 
the conjugate symmetry condition Z O ~  = e:, [27], [28] and 
Re2 { c o k }  + Im2 { c o k }  = 1 can be imposed on ck. These 
constraints are considered in detail in [19]. In the numerical 
examples given in Section V, we present results obtained by 
imposing these constraints on C k .  

C. Properties of the DEML Estimator 
We now sum up five significant advantages of the DEML 

estimator for uncorrelated signals with known waveforms as 
compared with the case of signals with unknown waveforms. 

First of all, the large sample and asymptotically statistically 
efficient DEML estimator is computationally much simpler 
than any existing large sample ML estimators for unknown 
signals. It has been shown in [9] and [lo] that for the case 
of uncorrelated and unknown signals, the multidimensional 
ML angle estimation problem also asymptotically decouples 
into K l-D problems, which may be solved with the standard 
MUSIC algorithm given in [l]. The MUSIC algorithm, how- 
ever, requires the eigendecomposition of the array covariance 
matrix, which is computationally expensive. On the contrary, 
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the cost function associated with the DEML estimator does 
not require any eigendecomposition. Moreover, on a parallel 
computer, the DEML estimator can be naturally implemented 
in a parallel fashion, i.e., by minimizing the K functionals in 
(26) in parallel. 

Second, the accuracy provided by the DEML estimator for 
uncorrelated signals with known waveforms is superior to that 
of the best estimators for unknown signals (see the compar- 
isons given in [ 181 and the numerical examples in Section V 
of this paper). In fact, when unknown signals are modeled as 
unknown deterministic parameters and the number of array 
sensors is finite, no estimator can achieve its CRB [9], which 
is bound to be greater than or equal to the CRB for signals 
with known waveforms due to the parsimony principle [24]. 

Third, the DEML estimator does not suffer any accu- 
racy degradation when the smallest angle separation A = 
infigj IOi - O j (  tends to zero. By contrast, the accuracy 
of any estimator that does not exploit the knowledge of 
the waveforms significantly degrades (until complete failure) 
when A approaches zero. This result is also illustrated in 
Section V of this paper with a numerical example. 

Fourth, the DEML estimator has no constraints on the 
number of incident signals at all, provided that the number of 
data samples is large enough, while estimators for unknown 
signals require that the number of signals be less than the 
number of array sensors. 

Fifth, the DEML estimator can handle the case of unknown 
spatially colored noise with little additional difficulties. The 
estimators for unknown signals, however, fail to handle this 
case. This advantage of the DEML estimator is particularly 
useful for estimating the incident angles of signals with 
known waveforms in the presence of unknown interfering and 
jamming signals that are not completely correlated with any of 
the known waveforms. This is especially true when the number 
of interfering and jamming signals is large (for example, larger 
than the number of array sensors) and when some of the 
interfering and jamming signals are wideband. The unknown 
noise covariance matrix Q may be used to accommodate both 
the presence of these interfering and jamming signals and any 
other noise, including the thermal noise. 

Iv. ESTIMATOR PERFORMANCE AND CRAh&R-RAO BOUND 

In this section, we present the asymptotic statistical perfor- 
mance analysis of the DEML estimator and compare the result 
to its CRB, i.e., the best possible performance for the class of 
asymptotically unbiased estimators. We shall confirm that if 
the incident signals are uncorrelated, the DEML estimator is 
asymptotically statistically efficient, i.e., the error covariance 
matrix of the estimates approaches the corresponding CRB 
asymptotically. We shall show in Section V with numerical 
examples that when the incident signals are moderately corre- 
lated, the relative efficiency of the DEML estimator, i.e., the 
square root of the ratio between the corresponding CRB and 
the error variance of an estimate, is close to 1. 

We first present the large sample statistical performance of 
the DEML angle estimates and their CRB's since the angle 
estimates are of the most interest. We then present the results 
when both the angle and amplitude estimates are of interest. 

Theorem2: Let ( 8 , )  be estimated with the DEML esti- 
mator, i.e., with (17),A (18), and (26). Then, the asymptotic 
covariance matrix of B is given by 

where 0 denotes the elementwise multiplication between two 
matrices, &, is defined in (6), and 

with 

and 

Pro08 See the Appendix. 0 
Theorem 3: The CRB of the angle estimates for signals 

with known waveforms, unknown amplitudes, and unknown 
noise covariance matrix may be written as 

1 
2N 

CRB(0) = - Re-' [(D*D) 0 RT, - A*A-lA] (42) 

where 

D = [dl, d 2 , " ' 7  dK] 

A = (A*D) 0 RT,, 

A = (A*A) 0 RT, 

(43) 

with d k 7  k = 1 , 2 , .  . . K as defined in (40), and 

(44) 

(45) 

and 

with A = Q - ~ / ~ A .  
Proofi The proof is a straightforward extension of the 

corresponding one in [ 181 and is therefore omitted. The details 
can be found in [ 191. 0 

For large N and uncorrelated signals, R,, approaches FL,, 
which is a diagonal matrix. Thus, the CRB(0) in (42) also 
becomes diagonal, and the CRB for the kth-angle estimate 
may be written as 

g;&k 
2 N [ & , ] k k d ; ( & ; & I  - & k & ; ) h k  

cRB(ek) = 

where [ R s s ] k k  is the power of the kth incident s i p  
exwcted, this result is the same as (37) when KS 

. As 
is a 

diagonal matrix, which confirms that the DEML estimator 
is asymptotically statistically efficient for uncorrelated signals 
with known waveforms and unknown amplitudes. 
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with 

(53) 

Pro03 The proof can be found in [19]. 0 
We can show [19] that the DEML estimator provides 

asymptotically statistically efficient estimates for both incident 
angles and unknown amplitudes when the known waveforms 
are uncorrelated with each other. 

Fig. 1. Typical known waveform. 

For a ULA and Q = a21, (46) may be further simplified to 

C - 2  

which checks with the corresponding CRB expression in [18]. 
As already shown, the DEML estimator may be used 

to estimate not only the incident angles but the unknown 
amplitudes Yk as well. The unknown amplitudes may be of 
interest in certain applications such as in communications 
and bistatic radar (where the transmitter and the receiver of 
the radar are at different locations). In the communications 
applications, the Yk represents the channel gain and phase shift. 
In radar applications, Yk represents the radar cross section of 
a target. Let 

U = [UT,  U T , .  . . , u y  

where 

U k  = [e, ,  Re ( Y k ) ,  Im ( Y k ) l T ,  = 1 , 2 , .  . . , K .  (49) 

Then, the asymptotic statistic of U is given by the following 
theorem. 

Theorem 4: Let { U k }  be estimated with the DEML estima- 
tor, i.e., with (17), (18), (26), and (24). Then, the asymptotic 
covariance matrix of U is given by 

1 
E[(U - U)  (U - U)'] = - Re-' (E) Re [(V*Q-'V) 

2 N  
0 (q: 63 E3)] Re-' (E) (50) 

where E3 denotes the 3 x 3 matrix with all elements equal to 
one, and 123 denotes the Kronecker product 

v = [Vl, V z , . . . :  VK], (51) 

IO' 
10 20 30 40 50 60 70 80 90 100 

Number of Data Samples 

Fig. 2. Root-mean-squared error (RMSE) of the DEML and the exact ML 
estimators as a function of S when two uncorrelated signals arrive from 
01 = 0' and 82 = 5 O .  AI = 5 and SNR = -5 dB. The solid lines are 
for the asymptotic CRB's. The statistical performance of DEML estimator 
coincides with its asymptotic CRB for known waveforms. The symbols "0" 
and "*" are for the exact ML and DEML estimators, respectively. 

V. NUMERICAL RESULTS 
We present in this section several examples showing the 

performance of the DEML estimator described in Section 111. 
The array used in the examples consists of M identical sensors 
that are uniformly spaced with a spacing 6 between adjacent 
sensors of a half wavelength. The incident signals are binary 
phase-shift keyed (BPSK) signals, and the gains are assumed 
one. A typical known waveform used in our examples is shown 
in Fig. 1 for N = 20. The performance of the estimator in each 
of the examples below was obtained from 100 Monte Carlo 
simulations. The DEML angle estimates are calculated with the 
computationally efficient algorithm presented in Section 111-B. 
In Sections V-A and B, the additive noise is assumed to be 
the thermal noise only, which is spatially white, i.e., Q = a21. 
The examples showing the cases where the additive noise 
consists of both the spatially white thermal noise and unknown 
narrowband interfering signals can be found in [19]. The 
empirical results of the DEML estimator are compared with 
those of the exact ML estimator. The results are also compared 
with the asymptotic statistical performance of the DEML 
estimator derived in the previous section and its asymptotic 
CRB's. 

A. Uncorrelated Signals 

Consider first an example where two uncorrelated signals 
with known waveforms arrive at a uniform linear array of 
M = 5 sensors from 1 9 ~  = 0" and 8 2  = 5". The signal-to-noise 
ratio (SNR) of each signal at each sensor output is assumed 
to be -5 dB. Fig. 2 shows the performance of the DEML 
estimator and the exact ML estimator as a function of the 
number of data samples N .  This figure and the figures below 
show the root-mean-squared error (RMSE) for the first signal. 
(The results are similar for the other signal or signals.) The 
exact ML estimates are obtained by the iterative alternating 
maximization approach described in [ 181. Arbitrary initial 
conditions are assumed for the exact ML estimator. Note that 
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the number of iterations needed by the exact ML estimator may 
be reduced by using initial conditions obtained with estimators 
such as MODEWSF 1201, [29], [30] or IQML [27], which 
were developed for unknown signals. When MODE is used, 
the total computation needed to obtain the exact ML estimates 
may be reduced by 4% or less for this example. The accuracies 
of the exact ML estimates obtained with and without using 
MODE are similar. Fig. 2 also shows the asymptotic statistical 
performance of the DEML estimator, which coincides with the 
asymptotic CRB’s. For comparison, the CRB’s for signals with 
unknown waveforms (see [lS]) are shown as well. Note that 
although the DEML estimator is a large sample ML estimator, 
its performance is very close to its CRB even for N as small 
as N = 20 for this example. Note that as the number of 
data samples becomes even smaller, the performance of both 
the DEML estimator and the exact ML estimator degrades 
as compared with the CRB. The performance of the exact 
ML estimator is better than that of the DEML estimator for 
very small N (i.e., N < 20 for this example). The DEML 
estimator, however, requires much less computation than the 
exact ML estimator. The computation, which is measured by 
the count of floating-point operations required by the DEML 
estimator is approximately 54 (for small N) and, respectively, 
35 (for large N) times less than that required by the exact 
ML estimator. 

Our numerical examples also show that whether a given 
N is large or not depends on what the M and the S N R  are. 
We have found that the larger the M, the more data samples 
are needed for the DEML estimator to achieve its CRB. We 
have also found that the higher the SNR, the closer the DEML 
estimator to its asymptotic CRB even when the number of data 
samples is very small. More detailed discussions can be found 
in [19]. 

Fig. 3 shows the performance of the DEML estimator and its 
CRB as a function of the number of incident signals K when 
the K uncorrelated signals arrive from Oo, 5 O , .  , [5(K - 

Known Waveforms. DEML 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
Correlation Coefficient 

10-11 

Fig. 4. Root-mean-squared error (RMSE) of the DEML and the exact ML 
estimators as a function of correlation coefficient when two correlated signals 
arrive from 81 = Oo and 82 = 5 O ,  M = 5, N = 100 and SNR = -5 dB. 
The solid lines are for the asymptotic CRB’s and the asymptotic statistical 
performance of DEML estimator. The symbols “+” and “0”. and “*” are for 
the exact ML estimator (with and without MODE), and the DEML estimator, 
respectively. 

l)]’, M = 5 ,  N = 100, and S N R  = -5 dB. We note that 
the performance of the DEML estimator and its CRB for 
uncorrelated signals with known waveforms are independent 
of K, even when K is larger than the number of array sensors 
M. For signals with unknown waveforms, however, K must 
be less than M, and the CRB increases as K increases. 

We remark that although we considered only the case of 5’ 
angle separation between incident signals, the performance of 
the DEML and exact ML estimators for signals with known 
waveforms and unknown amplitudes is similar for all angle 
separations. In fact, the CRB’s for uncorrelated signals with 
known waveforms are independent of angle separations as 
shown in [18] and in Sections 111 and IV of this paper. 

B. Correlated Signals 

In this section, we shall show how the performance of the 
DEML estimator degrades relative to its CRB as the incident 
signals become correlated. Consider an example where two 
correlated signals with known waveforms arrive at an array of 
M = 5 sensors from 01 = 0’ and 02 = 5’. The S N R  of each 
signal at each sensor output is assumed to be -5 dB, and the 
number of data samples N = 100. Fig. 4 shows the perfor- 
mance of the DEML estimator, the exact ML estimator with 
arbitrary initial conditions, and the exact ML estimator with 
initial conditions calculated with MODE as a function of the 
correlation coefficient between the two incident signals. Note 
that when the incident signals are highly correlated, the exact 
ML estimator may encounter a severe local minima problem. 
When arbitrary initial conditions are used for the exact ML 
estimator, the performance of the exact ML estimator may be 
poorer than that of the DEML estimator. The performance of 
the exact ML estimator may be improved by first using MODE 
to calculate the initial conditions. When MODE is used, the 
total computation needed to obtain the exact ML estimates may 
be reduced by 15%. In this example, the computation required 
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Fig. 5. Relative efficiency of the DEML estimator as a function of the 
correlation coefficient for various A when two correlated signals anive from 
01 = Oo and 02 = A, Ai = 5, SNR = -5 dB, and 

by the DEML estimator is approximately 35 (for uncorrelated 
signals) and, respectively, 92 (for highly correlated signals) 
times less than that required by the exact ML estimator with 
arbitrary initial conditions. 

Fig. 4 also shows the asymptotic statistical performance of 
the DEML estimator and the asymptotic CRB's. For com- 
parison, the CRB's for signals with unknown waveforms 
(see [18]) are shown as well. Note that the Monte-Carlo 
simulation results are close to the corresponding theoretical 
performance analysis results for both the DEML and the 
exact ML estimators. We also note that although the DEML 
estimator is an ML estimator for uncorrelated signals only, the 
performance degradation for moderately correlated signals is 
small, as compared with its CRB's. 

We consider next the relative efficiency of the DEML 
estimator as a function of the correlation coefficient between 
incident signals for various parameters. The relative efficiency 
of the DEML estimator is defined as the square root of the 
ratio between the corresponding CRB and the MSE. Consider 
first an example where two correlated signals with known 
waveforms arrive at an array of M = 5 sensors from O1 = O0 
and 02 = A. We also assume that SNR = -5 dB and 
N = 100. Fig. 5 shows the relative efficiency of the DEML 
estimator, which is obtained with the asymptotic statistical 
analysis results, as a function of the correlation coefficient for 
various A. We note that when A = O", the DEML estimator 
is efficient for both correlated and uncorrelated signals. For 
nonzero A, the relative efficiency decreases as the correlation 
coefficient increases. Yet, the relative efficiency for all A 
remains close to 1 for moderately correlated signals. 

Our numerical examples also show that for correlated sig- 
nals, the relative efficiency of the DEML estimator decreases 
as M increases. The decrease, however, is slow for moderately 
correlated signals. We have also found that for moderately cor- 
related signals, the relative efficiency of the DEML estimator 
remains close to 1 when K is increased. This result holds even 
when K > M .  More detailed discussions can be found in [ 191. 

Finally, we remark that the DEML estimator can also 
be used to estimate the incident angles of desired signals 

= 100. 

with known waveforms in the presence of interfering or 
jamming signals that are uncorrelated with the desired signals 
[18]. In particular, the interfering or jamming signals can 
be modeled as random processes with an unknown arbitrary 
spatial covariance matrix. This covariance matrix and that 
of the additive noise together are simply modeled with an 
unknown spatial covariance matrix Q. This modeling approach 
does not add any extra difficulties to the DEML estimator 
since the DEML estimator is derived based on an unknown 
noise covariance matrix Q. Moreover, when this model is 
used, the number of interfering or jamming signals may be 
greater than or equal to the number of array sensors, and 
the interfering or jamming signals may be wideband. Detailed 
examples showing the performance of this modeling approach 
can be found in [ 191. 

VI. CONCLUSIONS 

We have presented a large sample decoupled maximum like- 
lihood (DEML) angle estimator for narrowband plane waves 
with known waveforms and unknown amplitudes arriving at 
a sensor array in the presence of unknown and arbitrary 
spatially colored noise. The DEML estimator decouples the 
multidimensional problem of the exact ML estimator to a set of 
1-D problems and hence is computationally efficient. We have 
derived the asymptotic statistical performance of the DEML 
estimator and compared its performance with its CramCr-Rao 
bound (CRB), i.e., the best possible performance for the class 
of asymptotically unbiased estimators. We have shown that 
the DEML estimator is asymptotically statistically efficient for 
uncorrelated signals with known waveforms. We have shown 
that for moderately correlated signals with known waveforms, 
the DEML estimator is no longer asymptotically statistically 
efficient, but the performance degradation relative to the CRB 
is small. We have shown that the DEML estimator can also 
be used to estimate the arrival angles of desired signals with 
known waveforms in the presence of interfering or jamming 
signals by modeling the interfering or jamming signals as 
random processes with an unknown spatial covariance matrix. 
Finally, several numerical examples showing the performance 
of the DEML estimator have been presented in this paper. 

APPENDIX 
PROOF OF THEOREM 2 

We*first derive an expression for the covariance matrix of 
vec (B - B),  where vec (.) denotes stacking all columns of a 
matrix into a single column vector. For sufficiently large N ,  
we have 

vec(B-B) =vec(qzR,-, '  - B) 

[ X ( t n )  - By(tn)]~*(tn)R;; 
n=l 
N 
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where we have used [31] 

vec (ABC) = (CT @J A) vec (B). (56) 

Since the noise vector n(t,) is a circularly symmetric Gauss- 
ian random vector, we have 

lim NE[vec (B - B) vecT (B - B)] = 0, (57) N + m  

and 

lim NE[vec (B - B)vec*(B - B)] 
N-CC 

1 ”  
= (%,T @J 1)- y [Y*’(ti) @J w[n(ti)n*(tj)l 

=q;@Q. (58)  

i=l j=1 

. [YT(tj) €3 II(R;,T €3 1) 

Next, note that the DEML estimate of 0, is obtained by 
maximizing the following cost function: 

fi (8,) = b ; Q - 1 / 2 P , ( Q k ) Q - 1 / 2 b k .  

Then, we have 

(59) 

The ff(0,) may be obtained by differentiating the right- 
hand side of (61) and may be written as 

fT(8,) = -2Re {b;&-1’2[Pkkd&d@L + at,*d;PikdkaL 

- Pikdk(ai)’ - Pik&,a$Q-’/2bk} (65) 

where (.)’ = 8/88,. Since fi(0,) = O ( l / f l ) ,  the error 
- BI, in (60) will remain asymptotically unchanged when 

we rewrite fF(8,) as 

f Y ( 8 , )  ‘v -2Re {b;Q-1/2[PkkdkafidkaL + at,*diPikd,aL 
- Pik d k ( a h ) ’  - Pkk dLaL]Q-1/2bk} 

= -2Re { b;Q-1/2ard;Pik dka;Q-lj2bk} 
= -2(yk(2d;Pkkd, 

N -21y,12d;Pikdk. (66) 

Using (U), (66), (57), and (58) with (60), we obtain (67), 
which appears at the top of the page, where we have used 
PikPik = Pik and Re(zl)Re(z2) = Re(z1.z; + 2122)/2. 

0 Writing (67) in matrix form, we prove the theorem. 

REFERENCES 

[I] R. 0. Schmidt, “Multiple emitter location and signal parameter estima- 
tion,” IEEE Trans. Antennas Propagat., vol. AP-34, no. 3, pp. 276-280, 
Mar. 1986. 

[2] R. Roy and T. Kailath, “ESPRIT-Estimation of signal parameters via 
rotational invariance techniques,” IEEE Trans. Acoust., Speech, Signul 
Processing, vol. 37, no. 7, pp. 98&995, July 1989. 

[3] P. Stoica and A. Nehoraj, “Performance study of conditional and uncon- 
ditional direction-of-arrival estimation,” IEEE Trans. Acoust., Speech, 
Signal Processing, vol. 38, no. 10, pp. 1783-1795, Oct. 1990. 

[4] J. F. BGhme, “Estimation of spectral parameters of correlated signals in 
wavefields,” Signal Processing, vol. 10, pp. 329-337, 1986. 

[5] B. Ottersten, M. Viberg, P. Stoica, and A. Nehorai, “Exact and large 
sample ML techniques for parameter estimation and detection in array 
processing,” in Radar Array Processing, S. Haykin, Ed. New York: 
Springer-Verlag, 1993, ch. 4. 

[6] J. F. Bohme, “Estimation of source parameters by maximum likeliood 
and nonlinear regression,” in Proc. ZCASSP 84, 1984, pp. 7.3.1-7.3.4. 

[7] M. Wax, “Detection and estimation of superimposed signals,” Ph.D. 
dissertation, Stanford Univ., CA, Mar., 1985. 

181 I. Ziskind and M. Wax, “Maximum likelihood localization of multiple 

(60) 

(61) 

(62) 

(63) 

_ _  
sources by alternating projection,” IEEE Trans. Acousr.. Speech, S i g k l  
Processing, vol. 36, no. 10, pp. 1553-1560, Oct. 1988. 

[9] P. Stoica and A. Nehorai, “MUSIC, maximum likelihood, and 
Cramkr-Rao Bound,” IEEE Trans. Acoust., Speech, Signal Processing, 
vol. 37, no. 5,  pp. 720-741, May 1989. 

[IO] -, “MUSIC, maximum likelihood, and Cramkr-Rao bound: Fur- 
ther results and comparisons,” IEEE Trans. Acoust., Speech, Signal 
Processing, vol. 38, no. 12, pp. 2140-2150, Dec. 1990. 

[ 1 I] J. Ward, “High throughput packet radio networks with adaptive antenna 
arrays,” Ph.D. thesis, Ohio State Univ., Columbus, OH, 1990. 

[12] J. Ward and R. T. Compton, Jr., “Improving the performance of a slotted 
ALOHA packet radio network with an adaptive array,” IEEE Trans. 
Commun., vol. 40, no. 2, pp. 292-300, Feb. 1992. 

f i ( 8 k )  = 2Re {(b; - b’,)Q-1/2PkkdkahQ-1/2bk} 
N 2Re {(bi - b;)Q-1/2Pikd,a~Q-1/2b,} 
= 2Re { y k ( b k  - bk)*Q-1/2Pkkdk} 
-2Re{yk(bk - bh)*Q-1/2Pikdk} 

where we have used alQ-l/’b, = Y k a L a k  = Yk and the 
“N” is asymptotically equivalent to “=” since b; - b; = 
O ( l / O ) ,  and Q is a consistent estimate of Q. 



LI et al.: COMPUTATIONALLY EFFICIENT ANGLE ESTIMATION FOR SIGNALS WITH KNOWN WAVEFORMS 2163 

W. C. Y. Lee, Mobile Communications Engineering. New York: 
McGraw-Hill, 1982. 
W. A. Gardner and C. Chen, “Signal-selective time-difference-of-anival 
estimation for passive location of man-made signal sources in highly 
corruptive environments, Part I: Theory and method,” IEEE Trans. 
Signal Processing, vol. 40, no. 5 ,  pp. 1168-1184, May 1992. 
C. Chen and W. A. Gardner, “Signal-selective time-difference-of-anival 
estimation for passive location of man-made signal sources in highly 
corruptive environments, Part I: Algorithms and performance,” IEEE 
Trans. Signal Processing, vol. 40, no. 5, pp. 1185-1 197, May 1992. 
G. Xu and T. Kailath, “Direction-of-arrival estimation via exploitation of 
cyclostationarity-A combination of temporal and spatial processing,” 
IEEE Trans. Signal Processing, vol. 40, pp. 1175-1 185, July 1992. 
R. Gooch and J. Lundell, “The CM array: An adaptive beamformer for 
constant modulus signals,” in Proc. ICASSP 86, May 1986. 
J. Li and R. T. Compton, Jr., “Maximum likelihood angle estimation 
for signals with known waveforms,” IEEE Trans. Signal Processing, 
vol. 41, no. 9, pp. 285C2862, Sept. 1993. 
J. Li, B. Halder, P. Stoica, M. Viberg, and T. Kailath, “Decoupled 
maximum likelihood angle estimation for signals with known wave- 
forms,” Chalmers Univ. of Technol., Gothenburg, Sweden, Tech. Rep. 
no. CTH-TE-8, Feb. 1994. 
P. Stoica and K. C. Sharman, “Maximum likelihood methods for 
direction-of-arrival estimation,” IEEE Trans. Acoust., Speech, Signal 
Processing, vol. 38, no. 7, pp. 1132-1143, July 1990. 
W. G. Chen, J. P. Reilly, and K. M. Wong, “Detection of the number of 
signals in noise with unknown nonwhite covariance matrices,” in Proc. 

Q. Wu, K. M. Wong, and J. P. Reilly, “Maximum likelihood estimation 
for array processing in unknown noise environment,” in Proc. ICASSP 

L. Ljung, System Ident$cation: Theoryfor the User. Englewood Cliffs, 
NJ: Prentice-Hall, 1987. 
T. Soderstrom and P. Stoica, System Identification. London: Prentice- 
Hall, 1989. 
H. L. Van Trees, Detection, Estimation, and Modulation Theory, Part I .  
New York Wiley, 1968. 
G. W. Stewart, Introduction to Matrix Computations. New York: 
Academic, 1973. 
Y. Bresler and A. Macovski, “Exact maximum likelihood parameter 
estimation of superimposed exponential signals in noise,” IEEE Trans. 
Acoust., Speech, Signal Processing, vol. ASSP-34, no. 5, pp. 1081-1089, 
Oct. 1986. 

ICASSP 92, 1992, pp. V-377-V-380. 

92, 1992, pp. V-241-V-244. 

Bijit Halder received the B.Tech degree in elec- 
tronics and electrical communication engineenng 
from the Indian Institute of Technology, Kharagpur, 
India, in 1989, and the M.E. degree in electncal 
communication engineering from the Indian Insti- 
tute of Science, Bangalore, India, in 1991. He is 
currently workmg toward the Ph.D. degree in elec- 
trical engineering at Stanford University, Stanford, 
CA His areas of interest include statistical signal 
processing and performance analysis of linear and 
nonlinear adaptive algonthms. 

Petre Stoica (F94)  received the MSc. and D.Sc. 
degrees, both in automatic control, from the 
Bucharest Polytechnic Institute, Romania, in 1972 
and 1979, respectively. 

Since 1972, he has been with the Department 
of Automatic Control and Computers at the 
Polytechnic Institute of Bucharest, Romania, where 
he holds the position of Professor of System 
Identification and Signal Processing. He spent the 
years 1992, 1993, and the first half of 1994 with the 
Systems and Control Group at Uppsala University 

in Sweden as a Guest Professor. In 1993, he was awarded an Honorary 
Doctorate by Uppsala University, Sweden. From July 1994 to December 
1994, he held a Chalmers 150th Anniversary Visiting Professorship with 
the Applied Electronics Department at Chalmers University of Technology, 
Gothenburg, Sweden Currently, he is a guest professor in the Systems and 
Control Group of Uppsala University. 

Dr. Stoica is a Corresponding Member of the Romanian Academy. 

[28] P. Stoica and K. C. Shaman, “Novel eigenanalysis method for direction 
estimation,” Proc. Inst. Elec. Eng. Pt. F, vol. 137, no. 1, pp. 19-26, 
Feb. 1990. 

[29] M. Viherg and B. Ottersten, “Sensor array processing based on subspace 
fitting,” IEEE Trans. Acoust., Speech, Signal Processing, vol. 39, no. 5, 
pp. 111CL1121, May 1991. 

[30] M. Viberg, B. Ottersten, and T. Kailath, “Detection and estimation 
in sensor arrays using weighted subspace fitting,” IEEE Trans. Signal 
Processing, vol. 39, no. 11, pp. 2436-2449, Nov. 1991. 

[3 11 A. Graham, Kronecker Products and Matrix Calculus with Applications. 
Chichester, UK: Ellis Honvood, 1981. 

Mats Viberg (S’87-M’90) was born in Linkoping, 
Sweden, on December 21, 1961 He received the 
M.S. degree in applied mathematics in 1985, the 
Lic. Eng. degree in 1987, and the Ph.D. degree in 
electncal engineering in 1989, all from Linkoping 
University, Sweden 

He joined the Division of Automatic Control at 
Jian Li (S’87-M’91) received the M.Sc. and Ph.D. the Department of Electncal Engineering, Linkop- 
degrees in electncal engineenng from The Ohio ing University, in 1984, and from November 1989 
State University, Columbus, in 1987 and 1991, until August 1993, he was a Research Associate 
respectively. Dunng October 1988 to March 1989, he was on 

From Apnl 1991 to June 1991, she was an leave at the Informations Systems Laboratory, Stanford University, as a 
Adjunct Assistant Professor with the Department of Visiting Scholar. From August 1992 until August 1993, he held a Fulbnght- 
Electrical Eugineenng, The Ohio State University Hayes grant scholarship as a Visiting Researcher at the Department of 
From July 1991 to June 1993, she was an Assistant Electncal and Computer Engineenng, Bngham Young University, Provo, 
Professor with the Department of Electncal Engi- UT, and at the Informations Systems Laboratory, Stanford University. Since 
neenng, University of Kentucky, Lexington. Since September 1993, he has been a Professor of Signal Processing at the 
August 1993, she has been an Assistant Profes- Department of Applied Electronics, Chalmers University of Technology, 

sor with the Department of Electrical Engineenng, University of Florida, Sweden. His research interests are in statistical signal processing and its 
Giunesville. Her current research interests include sensor array signal pro- application to sensor array signal processing, system identification, and 
cessing, synthetic aperture radar image formation and understanding, radar communication. 
detection and estimation theory, image segmentation and processing, and Dr Viberg received the IEEE Signal Processing Society’s 1993 Paper 
communications Award in the Statistical Signal and Array Processing Area for the paper 

Dr. Li is a member of Sigma Xi and Phi Kappa Ph .  She received the 1994 “Sensor Array Processing Based on Subspace Fitting,” which he coauthored 
National Science Foundation Young Investigator Award. with B. Ottersten. 


