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MUSIC, Maximum Likelihood, and Cramer-Rao 
Bound 

Abstract-The problem of finding the directions of multiple plane 
waves with narrow-band arrays of sensors, and the related problem of 
estimating the parameters of multiple superimposed exponential sig- 
nals in noise, have attracted considerable interest recently. Several 
methods, such as the MUSIC and maximum likelihood (ML), have been 
proposed for solving these problems. 

This paper studies the performance of the MUSIC and ML methods, 
and analyzes their statistical efficiency. It also derives the Cramer-Rao 
bound (CRB) for the estimation problems mentioned above, and estab- 
lishes some useful properties of the CRB covariance matrix. The re- 
lationship between the MUSIC and ML estimators is investigated as 
well. Finally, the paper contains a numerical study of the statistical 
efficiency of the MUSIC estimator for the problem of finding the di- 
rections of two plane waves using a uniform linear array. 

A more exact description of the results of this paper can be found 
in the conclusion section. 

1. INTRODUCTION A N D  PRELIMINARIES 
EVERAL important problems in the signal processing S field, among them direction finding with narrow-band 

sensor arrays, estimation of the parameters of multiple su- 
perimposed exponential signals in noise, and resolution 
of overlapping echos (see [ l ] ,  [2], [9], [I21 and the ref- 
erences therein), can be reduced to estimating the param- 
eters in the following model: 

y ( t )  = A ( 8 ) x ( t )  + e ( t )  t = 1, 2, * . , N .  

( I . l a )  

In (1. I ) ,  y ( t )  E C" is the noisy data vector, x (  t )  E 

is the vector of signal amplitudes, e ( r )  E C" I is 
an additive noise, and the matrix A ( 8 )  E C""" has the 
following special structure: 

A ( 8 )  = [ a ( 4  . * * a(%>]  (1 . lb )  

where { U ; }  are real parameters, a ( w i )  E C m X  I is a so- 
called transfer vector [ between the ith signal and y ( t ) ] ,  
and 8 = [ o1 * * U,] '. In Section 11, we will briefly dis- 
cuss how the model ( I .  I )  encompasses the data models 
used in some of the applications mentioned above, and 
we will introduce the basic assumptions on (1.1). 

C" x 1 
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There are three main problems associated with fitting 
models of the form (1.1) to the data { y (  l ) ,  * . , y (  N )  } .  

a) Estimation of the number of signals n. Methods for 
estimating n are well documented in the literature (see, 
e.g., [31, [41, [21], and [22]) and will not be discussed 
here. In this paper we assume that the number of signals 
n is given. 

b) Estimation of the signal amplitudes { ~ ( r ) } .  Once 
an estimate of 8 is available, the estimation of x ( t )  re- 
duces (under reasonable conditions) to a simple least- 
squares fit. We will omit any explicit discussion on the 
problem of estimating { x ( t )  } . However, estimates of 
{ x (  t )  } will implicitly appear in the analysis that follows. 
Note that since it is required to estimate { x (  t )  } ;= (and 
not their ''average characteristics, " such as their covari- 
ance matrix), we will consider these variables to be de- 
terministic (i.e., fixed). This assumption does not exclude 
the possibility that x ( 1 ), * * . , x ( N  ) are samples from a 
random process. If so, then the distributional results de- 
rived in what follows should be interpreted as being con- 
ditioned on { x ( t )  } ;= I .  

c) Estimation of the parameter vector 8. Methods for 
accomplishing this task, and their performance, are the 
main topics to be dealt with in this paper. 

A class of methods for estimating 8 in ( I .  I ) ,  which has 
received significant attention, is based on the eigende- 
composition of the sample covariance matrix of y ( r )  [ 13- 
[9], [15]-[22]. A representative member of this class is 
the MUSIC (Multiple SIgnal Characterization) algorithm 
[ I ] ,  [2]. There has been considerable interest recently in  
analyzing the statistical performance of the MUSIC. Some 
interesting and related studies of the resolvability of MU- 
SIC have been reported in [7] and [8] (also see [21]). 
However, an expression for the covariance matrix, say C, 
of the MUSIC estimate of 8 has not been derived in these 
papers. A preliminary analysis of the MUSIC perfor- 
mance expressed by C can be found in [ 5 ] ,  but it appears 
to be incomplete. In Section 111, after a brief review of 
the MUSIC, we provide an explicit expression for C that 
holds for sufficiently large values of N .  In this section we 
also discuss an improved MUSIC estimator introduced in 
[6], for which we present a performance analysis as well, 
and a computationally inexpensive modification that 
should improve its performance. 

The expression of C derived in this paper can be used 
to compare the performance of the MUSIC to the perfor- 
mance achieved by other methods. In particular, compar- 
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ison to the performance corresponding to the Cramer-Rao 
bound (CRB) should be of interest. An expression for the 
Cramer-Rao lower bound on the covariance matrix of any 
unbiased estimator of the parameters 0 in the general 
model (1.1) does not appear to be available in the litera- 
ture (only expressions for special cases corresponding to 
N = 1 and a specific “transfer vector” a ( w  ) can be found, 
see, e.g., [24]-[26]). In Section IV, we derive the CRB 
covariance matrix under reasonable conditions. The be- 
havior of that matrix when rn or N ,  or both, increase is 
also studied. 

The maximum-likelihood (ML) method can also be 
used, under appropriate assumptions, to estimate the pa- 
rameter vector 0 in ( I .  l). The ML estimator (MLE) of 0 
has been the topic of two interesting and related recent 
papers [ lo]  and 1121 (see also 1111, [13], and [14] for 
studies on ML estimation of parameters in special cases 
of (1.1)). In Section V,  we briefly review the ML ap- 
proach to estimation of 8, study the consistency properties 
of the MLE, and discuss its statistical (second-order) per- 
formance. The main issue of this section is the question 
of the asymptotic efficiency of the MLE. It is shown that 
the MLE is not statistically efficient if rn is small, even if 
N is large; and that it can achieve the CRB only if m is 
increased. 

In Section VI, we investigate the relationship between 
the MUSIC and the ML estimators. Only some unsup- 
ported claims about this relationship can be found in the 
literature (see, e .g . ,  [5]  and [23]). We show that the MU- 
SIC is a large sample (for N >> 0) realization of the 
MLE if and only if the signals are uncorrelated. 

Finally, in Section VII, we present an analytic compar- 
ison between the MUSIC estimation error variance and 
the CRB. For uncorrelated signals, the MUSIC variance 
is shown to approach the CRB as rn and N increase. For 
correlated signals, MUSIC is shown to be statistically in- 
efficient. Also presented in this section are the results of 
a numerical study. Specifically, we perform a detailed 
comparison of the CRB and MUSIC variance in the case 
of two complex sine waves, over the set of feasible an- 
gular frequencies and for several values of SNR (signal- 
to-noise ratio), m, and the coefficient of correlation be- 
tween the two sine waves. 

11. NOTATION, BASIC ASSUMPTIONS, A N D  SPECIAL 
CASES 

Let us first list some notational conventions that will be 
used in this paper. 

AT = the transpose of matrix A E C h x p  
A’ = the conjugate of A 
A* = the conjugate transpose of A 
2 = the real part of A 
k = the imaginary part of A 

t r  A = the trace of A E C‘! x h  

A, j  = the i ,  j element of A 
A o B = the Hadamard product of A E Ck ‘I’ and B E 

CLXP ( [ A  0 B ] , ,  = A , B , , )  

A I B = the difference matrix A - B is positive 
semidefinite, with A and B being Hermitian 
positive semidefinite matrices 

6k,p  = the Dirac delta ( = 1 if k = p ,  and = 0 oth- 
erwise) 

w = a generic element of the vector 8; to avoid a 
complication of notation, the symbols w and 
0 are used to denote both the true and the 
unknown parameters 

d ( w )  = d a ( w ) / d w  
E = the expectation operator; for deterministic 

Next, we introduce some basic assumptions on the 
model (1.1). The MUSIC and the ML methods are based 
on different sets of assumptions. However, some assump- 
tions are common to both methods. The common assump- 
tions are listed first. 

AI :  m > n ,  and the vectors a (  w )  corresponding to ( n  
+ 1 ) different values of w are linearly independent. (This 
is a weak assumption that guarantees the uniqueness of 
both the MUSIC and ML estimators.) 

A2: E e ( t )  = 0, E e ( t )  e * ( [ )  = uland  E e ( t )  e r ( t )  = 
0. (This is a more restrictive assumption that is essential 
for the MUSIC algorithm; for the ML method, relaxation 
of A2 is possible in principle, but would lead to consid- 
erable complications.) 

The following additional assumption is needed for the 
MUSIC. 

AMU: The matrix 

signals, E ( . )  = l imN+m(l /N)EY=l  ( 0 ) .  

P = E x ( t )  x * ( t )  (2 .1)  
is nonsingular (positive definite), and N > m; and the 
following one is needed for the MLE: 

AML: E e ( t )  e * ( s )  

= E e ( t )  e T ( s )  = o f o r t  + s, 
and e ( t )  is Gaussian distributed. 

Assumption AML appears more restrictive than AMU 
(again AML could in principle be relaxed, but this would 
intro’duce significant complications). The distinction made 
above between the assumptions used by MUSIC and MLE 
is important for realizing which one of these two esti- 
mators, if any, is usable in a certain situation (see below). 

Next we describe briefly some applications of the gen- 
eral model (1.1). For other possible applications of (1. l ) ,  
we refer to [9], [12], and the references therein. 

A. Direction Finding with Uniform Linear Sensor 
Arrays 

The problem of determining the directions of n plane 
waves impinging on a linear uniform narrow-band array 
of rn sensors can be formulated as that of estimating the 
parameters 0 of the model (1. l ) ,  where x ( t )  is the vector 
of complex wave amplitudes, N is the number of “snap- 
shots,” and 

(2.2)  a ( w )  = [ l  e l w  . . . e r ( m - l ) w  I .  
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Note that in this case, A (  0 )  is a vanderMonde matrix and 
therefore assumption A1 is satisfied. Assumption A2 and 
AML mean that the noise is spatially and temporally un- 
correlated, and assumption AMU that the plane waves are 
not "fully coherent" and the number of snapshots is 
greater than the number of sensors in the array. All these 
assumptions look reasonable and could be satisfied. Thus, 
both the MUSIC and the MLE could be usable in this type 
of application. 

B. Estimation of Complex Sine Wave Frequencies from 
Multiple-Experiment Data 

Consider the following signal model: 

where m denotes the number of samples in an experiment, 
N is the number of experiments, { y p ( t )  } and { w,, 3 are 
the amplitudes and frequencies of the complex sine waves, 
and { ek(  t )  } is an additive noise. The model (2.3) can be 
written in the form (1.1) using the following definitions: 

(2.4) a ( W )  = [ 1 
. . . e"'"-"w I .  

The conditions A2 and AML mean that the noise within 
an experiment is white and that the noises of any two dif- 
ferent experiments are uncorrelated, which is plausible. 
Note that in this case we may well have m > N ,  which 
implies that the MUSIC may not be usable. 

C.  Estimation of Complex Sine Wave Frequencies from 
Single-Experiment Data 

The model for this application is given by (2.3) with t 
dropped: 

,I 

y k  = y,,erw/Jk + ek k = 1, . * , m (2 .5)  

which can be written in the form of (1.1) using the nota- 
tion (2.4). Assumption A1 is satisfied if m > n ,  A2 means 
that the noise ek is white, and AML reduces to the re- 
quirement that ek is Gaussian. Thus, the MLE may be 
usable. Since N = I ,  assumption AMU is not satisfied for 
n > 1, and hence the MUSIC is not usable when there 
are at least two signals and the problem is stated as pre- 
viously. To be able to use MUSIC we must recast the 
model in a different form. 

Let us denote the number of available samples by M 
(not m ) .  Let m be some integer greater than n ,  and define 

p =  I 

y ( 1 )  = [ y ,  * * . 4'1 + , ) I -  I 1 
.(a) = [ I  e'" . . . 1 e l ( n l -  I ) w  T 

x ( t )  = [ylelwI1 9 . - yfIe'""l] 

e ( t )  = [ e ,  - e/+nr - I 1  
t =  1, . - .  , M - m + l .  

Using the notation above, we can write (2.5) in the form 
(1. I )  with N = M - m + 1. In contrast to the multiple- 
experiment case, here e ( t )  and e ( s )  are correlated for t 
# s, and thus, the MLE is not applicable. On the other 
hand, the model written in the above form satisfies the 
MUSIC assumptions A l ,  A2, and AMU, provided 2n < 
2m < M + 1, which is readily achieved. Note that m can 
be chosen rather arbitrarily. This arbitrariness raises the 
question as to whether an optimal choice exists that min- 
imizes the estimation errors of the MUSIC algorithm. This 
type of question will be considered in Section VII. 

111. THE MUSIC ESTIMATOR 
We begin by setting some additional notation (which 

will be used extensively in this paper) and a brief descrip- 
tion of the MUSIC algorithm. Next, we establish the 
asymptotic distribution of the MUSIC estimator and de- 
rive an explicit expression for the covariance matrix of its 
estimation errors. Finally, we consider the improved MU- 
SIC estimator introduced in [6] for which we also provide 
a performance analysis. 

A. The MUSIC Algorithm 
In this subsection, we assume that conditions A l ,  A2, 

and AMU hold. Under these assumptions, the covariance 
matrix of the observation vector y ( t )  is given by 

R A E y ( t ) y * ( t )  = A ( 0 )  PA*(8)  + al. (3 .1)  

For notational convenience, we will simply write A in- 
stead of A ( 0 )  whenever there is no possibility of confu; 
sion. If 8 is an estimate of 0 ,  then we will also write A 
instead of A (  8) .  

* * 2 A,,, denote the eigenvalues of 
R. Since rank ( A P A * )  = n ,  it follows that 

Let A ,  I A2 I 

A, > a f o r i  = 1, a - .  . n; and 

A, = a fo r i  = n + 1, - 0 .  , m. (3 .2)  

It will be assumed throughout this paper that { A, } :'= I are 
distinct. 

Denote the unit-norm eigenvectors associated with A I ,  
. . .  , A, by SI. . * * , s,, and those corresponding to 
A n + I ,  * * . 7 A m  by g , ,  * * * , g,-,,. Also define 

s = [SI * * * s,,] ( m  x n )  

G = [gl . . * gm-,]  ( m  x ( m  - n ) ) .  (3.3) 

Next, observe that 

RG = APA*G + aG = aG 

which readily implies 

(3.4a) A*G = 0 
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or, equivalently, plained above, assumption AML is not necessary for the 
application of the MUSIC algorithm. However, it will be 
used in the analysis of the MUSIC estimator. .*(U) GG*a(w) = 0 for w = wl, 7 U,. 

(3 .4b)  To establish the distribution of the MUSIC estimator, 
we need the following result on the statistics of the eigen- 
vectors of the sample covariance matrix R .  

Lemma 3.1: a) The estimation errors (i, - s,) are 

Since the normalized eigenvectors { s,, gJ } are orthonor- 
mal, 

SS* + GG* = I (3.5) asymptotically (for large N ) jointly Gaussian distributed 
with zero means and covariance matrices given by 

it follows that (3.4) can also be written as 

( 3 . 6 )  
It is not difficult to see that the true parameter values 

{ W I ,  * * , w , }  are the only solutions of (3.4) or (3.6). 
The proof is by contradiction. Assume that there exists 
another solution which we denote by 0, + I .  The matrix 
SS* in (3.6) is the orthogonal projection operator onto the 
subspace spanned by the columns of S .  Thus, it would 
follow from (3.6) that the linearly independent vectors 
{ u ( w , ) } ~ ~ ~  (by assumption A2) belong to the column 
space of S. However, this is impossible since that space 
is of dimension equal to n. 

The basic idea of the MUSIC algorithm is the exploi- 
tation of the property (3.4), or (3.6), of the true covari- 
ance matrix R .  In practice, R is unknown, but it can be 
consistently estimated from the available data. Let 

l N  
R = c y ( t ) y * ( r ) .  

Similar to the eigendecomposition of R ,  let { s^, , - . * > s,, A 

1 = I  

gl, * . * , g,,, - n  } denote the unit-norm eigenvectors of R ,  
arranged in the descending order of the associated eigen- 
values, and let $ and G denote the matrices S and G made 
of { i, } and, respectively, { g, } . Define 

f ( w )  = .*(U) GG**a (w)  (3.7a) 

= a* (w) [Z  - S*]U(W). (3.7b) 

The MUSIC estimates of { w, } are obtained by picking 
the n values of w for whichf(w) is minimized. Minimi- 
zation of f (  w )  is usually done by evaluating it at the points 
of a fine grid, using (3.7a) or  (3.7b) [(3.7a) is preferred 
to (3.7b) if n > m - n ,  and vice versa]. 

There are several variants of the MUSIC algorithm de- 
scribed above, which are currently in use (see the excel- 
lent survey paper [6] and [ 151-1 171). Several computa- 
tionally efficient (adaptive or batch) implementations are 
also available 1181-[20], 1301. For the sake of concise- 
ness, in this paper we will concentrate on the basic MU- 
SIC algorithm and its improved version introduced in [6] 
(to be described later). Other variants of the MUSIC can 
be analyzed similarly with respect to their statistical prop- 
erties [37]. 

B. MUSIC Asymptotic Distribution 
In this and the next subsection, we assume that condi- 

tions A I ,  A2, AMU, and AML hold. As already ex- 

. si,J wjs,,; 
E ( ? ;  - S j ) ( i j  - S J )  T 

(3.8a) 

b) The orthogonal projections of { g i }  onto the column 
space of S are asymptotically (for large N ) jointly Gauss- 
ian distributed with zero means and covariance matrices 
given by 

A '  
N 

= - (3.9) 

E ( s s * ~ , ) ( s s * ~ , ) ~  = o for all i, j .  (3.10) 

Proof: The results (3.8) are standard, see 171, [8] and 
the references therein. Result (3.9) has apparently been 
introduced in [5] and [6] (based on results for the real 
case, presented in [31]) but a proof was not provided. Re- 
sult (3.10) appears to be new. Proofs of (3.9) and (3.10) 

H 
We can now state and prove the result on the asymptotic 

distribution of the MUSIC estimator. 
Theorem 3. I :  The MUSIC estimation errors { G, - w, } 

are asymptotically (for large N ) jointly Gaussian distrib- 
uted with zero means and variances-covariances given by 

can be found in Appendix A. 

1 Re { d * ( w , )  GG*d(w,) . a * ( w , )  U a ( w , ) }  
- -  - 

2N h(wJ  h(w,) 
(3 .1 l a )  

where U is defined in (3.9), d ( w )  = d u ( w ) / d w ,  and 

h ( o )  = d * ( w )  GG*d(w).  (3.11b) 

Proof: See Appendix B. 
For the variance of the estimation error (G ,  - U,), we 

obtain from (3.11) the following expression: 
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2 1 a * ( w , )  U U ( W i )  
E ( ; ,  - w, )  = 

2N h ( w i )  

T m - n  1 

(3 .12)  

It is interesting to note that the MUSIC variance may take 
large values when some of the eigenvalues { A , }  := I are 
close to a .  This case corresponds to closely spaced signals 
(when the matrix A is almost rank deficient), to low sig- 
nal-to-noise ratio, or to highly correlated signals (when 
the signal covariance matrix P is nearly singular). The 
variance may also be large when the vector d (  U , )  is close 
to the column space of A (or  S )  (and therefore, quasi- 
orthogonal to { g k } ) .  In such a case, the transfer vector 
a ( w  ) is relatively insensitive to variations of w around U,,  

which means thatf(w) has a flat minimum at w = U,. 

In Section VII, we will derive an alternative formula to 
(3.12). Using that formula, we will reinforce the conclu- 
sions above and will show that the MUSIC estimator 
variance has the tendency to decrease with increasing m 
(which is intuitively expected). 

C. An Improved MUSIC Estimator and Its Asymptotic 
Distribution 

An appealing (valid for large N ) maximum likelihood 
approach has been used recently in [6] to derive an im- 
proved MUSIC estimator. More exactly, the improved es- 
timator is obtained by maximizing the likelihood of the 
vector 

, m - n.  (3.13) i = 1, * - .  

Note that the MUSIC estimator minimizes 1 e, 1 2 .  It 
is claimed in [6] that the estimator that maximizes the 
asymptotic (for N >> 0)  likelihood of (3.13) is given by 
the minimizer of the following function: 

(.(a> = f ( w > / r ( 4 .  (3.14a) 

In (3.14a), f ( w )  is the MUSIC function given by (3.7), 
and 

r ( w )  = a * ( w )  O a ( w )  (3.14b) 

where U is the matrix U ,  (3.9), made of { i k }  and { s l k } .  
As an aside, observe that r ( U )  is related to the numerator 
in the variance formula (3.12). It is shown in the follow- 
ing that the estimates obtained by minimizing (3.14) for 
any function r ( w )  have the same asymptotic (for large 
N ) distribution as the MUSIC estimator. 

Theorem 3.2: Assume that the function r (a) satisfies 
* . 9 n ,  

but is otherwise arbitrary. Then the estimates minimizing 
f( w )  and a ( U )  have the same asymptotic (for large N ) 
distribution. 

n 
E ,  = a * ( w ) g ,  

the regularity condition r ( U , )  # 0 for i = 1, 

Proof: See Appendix C. rn 
The result above may explain the similarity in the per- 

formances of the MUSIC and the estimator minimizing 

(3.14), observed in some of the simulations in [6]. Note 
that since the result holds for a general function r ( w ) ,  
improvement of the MUSIC performance should not be 
attempted by modifying the MUSIC function as in (3.14a) 
(at least, not for a “sufficiently large” N ) .  In fact, we 
show in the following that an “exact” ML approach based 
on the “data” (3.13) does not lead to minimization of 
(3.14a) and (3.14b). 

In Appendix D, we show that the asymptotic (for large 
N ) negative log-likelihood function of (3.13) is given by 

-In L = const + ( m  - n) In [.*(U) U U ( O ) ]  

(3.15) 

Observe that (3.15) is O (  1 ) for w close to a true value, 
and O ( N )  otherwise. Thus, for w close to ai for some i 
(which is the case of great interest), the dominant term of 
-In L is affected if we neglect the second term in (3.15) 
as was implicitly done in [6]. On the other hand, the dom- 
inant term of (3.15) is not affected if U in the second and 
third terms of -In L is replaced by a consistent estimate. 
We replace U by 0 defined previously. Thus, we propose 
to determine the estimates of { wi } by minimizing the fol- 
lowing function with respect to w :  

where r ( w )  is defined in (3.14b). 
Since the derivative of the first term in (3.16) with re- 

spect to w is o( l / N ) ,  it is not difficult to see that the 
asymptotic (for N >> 0 )  distribution of the estimator that 
minimizes (3.16) is also identical to that of the MUSIC. 
However, in the finite sample case, use of (3.16) may lead 
to improved performance as compared to (3.14), since 
(3.16) corresponds to a more exact (and computationally 
inexpensive) approximation of the likelihood function. 
Furthermore, when grid methods are used to approxi- 
mately locate the minima of (3.16) (which is what is usu- 
ally done), the first term in (3.16) may not be negligible, 
as explained above. Numerical experience with the new 
eigenanalysis estimator introduced above will be reported 
elsewhere. 

IV. THE CRAMER-RAO BOUND 
In this section, we assume that conditions A1 , A2, and 

AML hold. Under these conditions, we derive the CRB 
on the covariance matrix of any unbiased estimator of 8 
and U. In the following sections, we compare the perfor- 
mance of the MUSIC and the ML estimators (the MLE is 
discussed in Section V) to the ultimate performance cor- 
responding to the CRB. The usefulness of the CRB for- 
mula derived in the sequel is not, of course, limited to the 
performance studies reported in this paper. It may also be 
used to establish the relative efficiency of other estimators 
for8 and aproposed in the literature (see, e.g., [15]-[17], 
W1).  
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The first result of this section is contained in the follow- 

Theorem 4.1: Under the assumptions stated, the CRB 
ing theorem. 

for 8 and U is given by 

CRB(8) = - Re [ X * ( r )  D* 
2 1 = 1  

* [ Z  - A ( A * A ) - I A * ]  D X ( ‘ ) ] ]  
T N  - I  

(4 .1)  

and 
O L  

varcR(a) = - 
mN 

where 

D = [ d ( w , )  * * * d(w,)] 

(recall that d ( w )  = d a ( w ) / d w ) .  
Proof: See Appendix E. H 

In the following, we drop the dependence of the CRB 
on 8 for notational convenience. Instead, we stress the 
dependence of the CRB on m and N. We would expect 
the CRB to “decrease” when m or N increases. This in- 
tuitively expected result holds indeed, as shown in the 
next theorem. 

Reorem 4.2: The CRB covariance matrix (4.1) satis- 
fies the following order relations: 

(4.3a) 

(4.3b) 

Proof: See Appendix F. U 
The results above are valid for a general transfer vector 

a ( w ) .  In the following, we present some specialized re- 
sults for transfer vectors of the form (2.2), which appear 
in several signal processing applications (see Section I1 
for some examples). 

A. CRB for  n = I ,  N = I and a ( w )  Given by (2.2) 

CRB(N) I CRB(N + 1 )  

CRB(m) 2 CRB(m + 1 ) .  

In this case, we have 
A = [ ]  elw * * e i ( m  - I ) W I T  

D = [o ieiw . . . i ( m  - 1)e;(m-1)”l7 

which gives 
A*A = m 
D*D = 1 + 22 + + ( m  - 112 

m ( m  - 1)(2m - I )  
6 

- - 

D*A = - i [ l  + 2 + + ( m  - l ) ]  

(4 .4)  
. m ( m  - 1)  - 

2 .  
- - 1  

Inserting (4.4) into the expression (4.1) of the CRB, we 
obtain 

6 -- - 60 1 6 1 
I x [  m(m2 - 1 )  SNRm(m2 - 1 )  m3SNR 

- - CRB = 7 

which agrees with the result for this specialized case de- 
rived in [24] (see also [25]). In (4.5), SNR = ( x I ’ / u .  

B. Asymptotic CRB for  a ( U )  Given by (2.2) 
According to Theorem 4.2,  for increasing m or N, 

CRB ( m ,  N )  forms a sequence of monotonically nonin- 
creasing positive definite matrices. In particular, this im- 
plies that CRB ( m ,  N ) has a well-defined limit when either 
m or N tends to infinity. In the following, we evaluate the 
limit (or asymptotic) matrices CRB ( m ,  0 0 )  and CRB ( 00, 

03 ). The formula derived for CRB ( m ,  03 ) holds for gen- 
eral a( u). However, to obtain a formula for CRB (03, 
03 ) we need to specify a ( U ) .  The formula for CRB ( 00, 

03 ) provided in the following holds for a ( U )  given by 
(2.2). 

Theorem 4.3: a) For sufficiently large N, the CRB is 
given by 

CRB ( m ,  03) 

= 2 N  b e  [ ( D * [ I  - A ( A * A ) - I A * ] D ]  o P T 1 ) ’  

(4 .6)  
where P is defined in (2. l ) ,  and a denotes the Hadamard 
matrix product. 
b) Let a ( w )  be given by (2.2). Then, for sufficiently large 
m and N, the CRB is given by 

~ / S N R ,  o 
C R B ( = , m )  =*[o m N  ... 1 

1 /SNR, 

( 4 . 7 )  

Proof: See Appendix G .  H 

where SNR; = Pi i /a  is the signal-to-noise ratio for the ith 
signal. 

The usefulness of the above asymptotic CRB formulas 
lies in the fact that they are (much) easier to evaluate than 
the exact finite-case formula (4.1), yet they may provide 
good approximations to the exact CRB for reasonably 
large values of m and N. 

V. THE MAXIMUM LIKELIHOOD ESTIMATOR 
In this section, we assume that conditions A1 , A2, and 

AML hold. The log-likelihood function of the observa- 
tions { y ( t )  1 ;= is then given by 

N 1 L = const - mN1n U - - c [y ( r )  - A x ( t ) ] *  
U 1 = I  

[ Y @ >  - A x W I  (5.1) 
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(see (E. 1 )  in Appendix E). The likelihood (5.1) can be 
concentrated with respect to U and { x( t )  }.  Some straight- 
forward calculations show that the ML estimators of these 
parameters are given by (see, for example, (E.2a)-(E.2c) 
in Appendix E) 

Clearly, (5 .5)  is minimized by a = A ,  which shows that 
the MLE of 0 is consistent when N + 03 (and m < M ). 
The MLE of ( x (  t )  } and U, however, are inconsistent. 
This can be seen as follows. When N + 03, 2 ( t )  and 6 
tend to the following limits: 

i ( t )  = [ a * A I p ’ [ a * y ( t ) ]  t = 1 ,  * * .  , N (5.2) i ( t >  -+ ( A * A ) - ’ A * ~ ( ~ )  
N c [ y ( t )  - aa(t)]*[y(t) - A a ( t ) ]  1 

U = -  
mN r = i  

(5 .3)  

where a denotes the ML estimate of A ( i .e . ,  a = A ( 8 ) ,  
where 8 is the MLE of e ) .  Inserting (5.2) and (5.3) (with 
A, which is not yet determined, replaced by A )  into (5. l), 
we obtain the concentrated likelihood function 

const - mN In F (  e )  
where 

F ( e )  = tr [ I  - A ( A * A ) ~ I A * ] R .  (5 .4)  

= x ( t )  + (A*A)%*e(r )  (5.6a) 

A I  a + - t r  [Z - 
m 

A ( A * A ) - I A * ] R  

m - n  
m 

-- - (5.6b) 

which, for m < 00, differ from the true values x( t )  and 
U .  The inconsistency of 2 ( t )  and & in  the case of 111 < 03 

(anticipated in the previous discussion) implies that the 
MLE of 0 does not achieve the CRB for large N if m is 
small. The following example illustrates this fact. 

Consider the case of a single complex sine wave. The 
MLE of the sine wave frequency U is given by the mini- 
mizer of [see (5.4)] 

Thus, the ML estimate of 0 is given by the minimizer of 
F (  e ) .  Detailed discussions on the implementation of the 

Here, we are interested in the properties of the MLE. 
From the general theory of estimation, it is known that 

an MLE is asymptotically (as the number of data points 

F ( 8 )  = tr [ I  - a ( w ) [ a * ( w )  a ( ~ ) ]  p ’ a * ( ~ ) ] k  (5.7a) 

minimization of (5.7a) is equivalent to maximization of 
the following function (which, we note in passing, can be 
interpreted as an averaged periodogram): 

MLE can be found in [10]-[12], [33]-[36], and [42], where is given by (2.2). Since a * ( U )  a ( U )  E m $  

- -  
tends to infinity) efficient, under some “regularity” con- 
ditions (see, e.g., [27]). In  other words, its asymptotic 
covariance matrix attains the CRB. However, what should 
“asymptotic” mean in our case where m or N or both 
could be large? Furthermore, does our estimation problem 
satisfy the “regularity” conditions? The essential regu- 
larity condition is that the MLE is consistent. In  our case, 
there are mN “data” from which 1 + n ( N  + 1 ) param- 
eters are estimated. The ratio number of data to number 
of estimated parameters remains bounded if rn < CO, even 
if N + 03; this ratio increases without bound if and only 
if m + 03. This observation suggests that the CRB cannot 
be achieved by increasing N ;  the essential requirement for 
attaining the CRB should be to increase m. The heuristical 
discussion above is made more precise in the following 
(see also [37]). 

A. The Cuse of Small m 
We begin the analysis by studying the consistency 

properties of the MLE when N -+ 03 and m < CO. 

Since R tends to R as N -+ 03, it follows that the MLE of 
0 tends to the minimizer of the following (asymptotic) cri- 
terion function: 

tr [ I  - A ( A * A ) - ’ A * ] R  
= t r  [Z - a(a*a)-’a*][APA* + aZ] 

= t r  [ /  - A(A*A)-’A*]APA* + a ( m  - I 7 )  

2 u ( m  - n ) .  ( 5 . 5 )  

g ( e )  = qU) R+). (5 .7b)  

We want to determine the asymptotic (for N >> 0 )  
variance of the estimate CJ that maximizes (5.7b), and to 
show that this variance is strictly greater than the CRB for 
m < 03. After some calculations presented in Appendix 
H, we obtain 

6a mP + U 
varML(G) = - N m?(m’ - 1)P” (5 .8)  

The asymptotic (for large N )  CRB is given by [see (4.5) 
and (4.6)] 

6u 1 
N P m ( d  - I ) ’  

varcR(;) = - 

Thus, 

U 1 
(5.9) 1 + ~ 

m SNR 
varML(CJ)/varcR(G) = 1 + - 

mP 

which shows that the MLE is ineficienr f i r  nr < CO,  ei’en 
though N + W. The example above will be significantly 
generalized in Section VII. 

B. The Case of Large m 
We now assume that both Nand m tend to infinity. Then 

the consistency of 19 and 6 follows from ( 5 . 5 )  and (5.6b). 
To establish the consistency of a(  t ) ,  we need to introduce 
the following additional assumption: 

.*(U) .(U) -+ 03 as m + 03. (5.10) 
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Observe that a ( w )  given by (2.2) satisfies (5. IO) .  Under 
( 5 .  IO) ,  the covariance matrix of the bias term in (5.6a), 

tends to zero as m + 03, which establishes the consis- 
tency of i( r ) .  

The condition (5.10) is not only sufficient but also nec- 
essary for the consistency of i ( t ) .  In  fact, without this 
condition, the analysis of consistency would be meaning- 
less. Indeed, the signals that do not satisfy (5. IO)  must be 
damped in some way (for example, exponentially 
damped). For such transient signals the behavior for large 
m is of no interest. 

Once the consistency of the MLE has been established, 
its asymptotic efficiency essentially follows from the gen- 
eral theory of ML estimation [27]. Thus, under (5. IO) the 
MLE of 8 will achieve the CRB for  large m and N.  As a 
simple illustration of this property, observe from (5.9) that 
the asymptotic (for large N ) ratio varML ( &)/varcR ( & )  
tends to one as m increases. 

Remark: For uniformly spaced linear arrays or uni- 
formly sampled undamped exponential signals, the above 
requirement on N to be large is not necessary. Indeed, the 
consistency and asymptotic (for large m )  efficiency of the 
ML estimates of sine wave parameters have been estab- 
lished in [26] for the single-experiment case ( N  = 1 ). 

rn 
Let us summarize the main results of this section. The 

MLE of 8 converges to the true values when N increases. 
However, if m is small, then the MLE does not achieve 
the CRB even if N is increased without bound! For 
damped signal models, there is no remedy to this situation 
and the CRB cannot in general be attained. For undamped 
signal models [which satisfy ( 5 .  lo)], the MLE achieves 
the CRB as m becomes large. See also Section VI1 and 
[37] for an analysis that reinforces the conclusions above. 

Remark: It is worth noting that the inefficiency of the 
ML estimator of 8 in the case of a small m is a direct 
consequence of the requirement to estimate the amplitude 
values { x ( l ) ,  * . * , x ( N ) } .  If { x ( t ) } : = ’  can be as- 
sumed to be a sample from a Gaussian white process and 
if it is required to estimate the covariance matrix P only 
(a far less demanding requirement), then one can conjec- 
ture that in such a case the MLE of 8 will be statistically 

rn 
The previous results provide some guidelines for 

choosing the values of m and N in a given application of 
the MLE (assuming that selection of m and N is at the 
disposal of the user, which, for some applications, such 
as array processing, where the number m of sensors is 
fixed, may not be the case). For damped signals, one 
should proceed in the following rather obvious manner: 
m should be chosen according to some guess of the signal 
damping period and N should be increased as much as 
possible (under restrictions on computer and measure- 
ment time). For undamped signals, one should select the 
values of m and N by a compromise between statistical 

efficient for large N and any m > n.  

efficiency and computational complexity. When m is in- 
creased, the MLE performance approaches the CRB per- 
formance. Furthermore, the CRB for undamped signal 
models is expected to decrease (much) faster with m than 
with N (for example, note from (4.7) that for complex 
sine waves the CRB decreases as 1 /m3N as m and N in- 
crease). Thus, from the viewpoint of statistical efficiency, 
the tendency should be to increase m rather than N. On 
the other hand, the computational burden associated with 
the MLE increases faster with m than with N (for exam- 
ple, evaluation of F ( 8 )  for a given 8 requires O ( m ’ N )  
arithmetic operations). Thus, the need for the compro- 
mise mentioned above when selecting m and N is clearly 
seen. 

VI. THE RELATIONSHIP BETWEEN THE MUSIC A N D  

ML ESTIMATORS 
In this section we assume that conditions AI ,  A2, 

AMU, and AML all hold, such that both the MUSIC and 
ML estimators are usable. We want to investigate possi- 
ble relationships between MUSIC and MLE. 

By invoking the invariance principle of the ML esti- 
mators, it has been claimed by some authors (see, e.g., 
[5]) that MUSIC is a realization of the MLE. More pre- 
cisely, it was claimed that since under the conditions 
stated, the sample eigenvectors { S, } are ML estimates of 
the true eigenvectors { s,} (see, e.g., [28] and [31]), the 
MUSIC estimate 8 of 0 obtained from { s^, } should be the 
ML estimate by the invariance principle. However, this 
line of argument is not quite correct. Briefly stated, the 
reason is as follows. When { 8 } span the set of feasible 
values Do, { s,} span a set that let us denote by D,. Every 
point from D, can be mapped back to a point in DB by 
using the so-called inverse function. Existence of this in- 
verse function is a key condition for the validity of the 
invariance principle. Now, due to estimation errors, { s^, } 
will in general not belong to D, (which is a “ th in”  set in 
C”’ ’ ); as a consequence, the inverse function cannot be 
used to determine the point in DB that corresponds to { s^, } 
for the simple reason that there is no such point (the map- 
ping from { s ,̂ } to 8 employed by MUSIC is only an ap- 
proximation of the correct inverse function). Thus, the 
invariance principle fails to be applicable. More details 
on the invariance principle of ML estimators, and its fail- 
ure to apply to the type of problem discussed above, can 
be found in [29]. 

In Section 111, we have seen that the MUSIC estimator 
is a large sample (for N >> 0 )  realization of [in ML es- 
timator obtained from the approximate distribution of the 
statistic (3.13). This property does not imply any imme- 
diate relationship between the MUSIC and the MLE of 
Section V ,  obtained from the exact distribution of the raw 
data statistic. However, it suggests that the MUSIC esti- 
mator possesses some “optimality” property and there- 
fore that a relationship to the MLE is likely to exist. That 
this is indeed the case is shown in the following theorem. 

Theorem 6.1: Under the assumptions stated (AI ,  A2, 
AMU, and AML), the MUSIC estimator is a large sample 
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( N  >> 0 )  realization of the MLE of Section V,  if and 
only if the signal covariance matrix P is diagonal. 

Proofi See Appendix I. 
The result of Theorem 6.1 is pleasantly intuitive. When 

the n signals are uncorrelated, it should indeed be possible 
(a t  least for N )  to decouple the n-dimensional search 
problem implied by the MLE into the n one-dimensional 
problems solved by MUSIC. When the signals are cor- 
related, this should not be possible. Note that it is this 
decoupling that makes the MUSIC estimator much more 
attractive computationally than the MLE. 

We may also remark that the theorem above provides a 
theoretical explanation for the good performance of the 
MUSIC, observed in many experiments with uncorrelated 
signals, as well as for a degradation of performance when 
the signals are highly correlated. More quantitative re- 
sults on these aspects of the MUSIC performance can be 
found in the next section (see also the companion paper 

VII. AN ANALYTIC AND NUMERICAL STUDY OF 

PERFORMANCE 
Our aim in this section is to study in more detail the 

MUSIC estimation error variance and to compare it to the 
CRB. We will use the asymptotic (for large N ) formulas 
(3.12) and (4.6) for the variance of the MUSIC estimator 
and the CRB, respectively. Thus, our results will be valid 
for a sufficiently large number N of experiments or snap- 
shots. 

A .  An Analytic Study 

the MUSIC error variance. From (3.12) we obtain 
We begin by developing a more convenient formula for 

varMu ( hi 

which implies 

APA* = SAS* 

APA*APA* = SA'S* 

and therefore 

( S * A ) P ( A * S )  = A 
( S * A ) P ( A * A )  P ( A * S )  = A'. (7 .2)  

Since the columns of A lie in the column space of S 
and A has full rank, it follows that the matrix S*A is non 
singular and 

ss* = A ( A * A ) - ' A .  (7.3 

The nonsingularity of ( S * A )  and (7.2) gives 

( A * S ) K - ' ( S * A )  = P - '  

( A * s ) K - ~ ( s * A )  = P - ' ( A * A ) - ' P - I .  (7 .4)  

Using (7.3) and (7.4) in (7. l ) ,  we get 

varMU(bi) = & { [ P - ' I i i  + ( T [ P - ' ( A * A ) ~ I P - ' ] ~ ~ ) /  

h(WI) (7 .5a)  

where 

h ( w )  = d * ( w ) [ I  - A ( A * A ) - I A * ]  d ( w )  (7.5b) 

and ( * ),] denotes the i, j element of the matrix in ques- 
tion. The variance (7.5a) may take relatively large values 
if the signals are highly correlated (i.e.,  P is nearly sin- 
gular) or they are closely spaced (i.e., A*A is nearly sin- 
gular), or d (  w , )  is close to the column space of A for some 
i [a similar conclusion has been drawn in Section I11 using 
(3.12)]. 

Evaluation of formula (7.5) for the MUSIC variance 
can be done directly from the original parameters (T, P ,  
and t9 = { w, ) of the problem. The eigendecomposition of 
R is not necessary, which is in contrast to the evaluation 
of (3.12). Furthermore, (7.5) can be conveniently used to 
analytically compare the MUSIC error variance and the 
CRB. For this, note from (4.6) that the CRB is given by 

varCR (G I  

where 

Using (3.1) and the eigendecomposition of R ,  we can 
write 

(7 .6 )  

First, we consider the case of uncorrelated signals. In 
such a case, the matrix P is diagonal, and (7.5) and (7.6) 
reduce to 

1 
varMu(bl)  = 

2 N  * SNR, SNR, 

R = APA* + CTI = SAS* + oGG* = S R S *  + (TI (7.7a) 
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and Furthermore, let ~ ( w )  be given by (2.2). We evaluated 
the efficiency ratio 

(7 .9)  (7 .7b)  

where SNR, = P , , / a .  Since in the case of uncorrelated 
signals, the MUSIC is a large sample (for  N >> 0 )  re- 
alization of the MLE (see Theorem 6.1), it follows that 
(7.7a) also gives the variance of the latter estimator. 

From (7.7) we obtain 

varMU(iS,)/varCR(&,) = 1 + [(A*A)-'],,/SNR,. (7 .8)  

It is interesting to note that in this case varMLI(GI)  de- 
creases monotonically with increasing m. This is so since 
both [ ( A * A ) - ' ] ,  and varCR(&;) (see Theorem 4.2) 
monotonically decrease when m increases. For reasonably 
large values of m and SNR, the ratio (7.8) expressing the 
efficiency of the MUSIC estimator will be close to one. 
Furthermore, if the signals are undamped so that (5.10) 
holds, the ratio will tend to one as m increases. Thus, we 
rediscover in another way the fact shown in Section V ,  
that tht> M L E ,  which fo r  diagonal P is equivalent to MU- 
SIC, achieves the CRB as m becomes large fo r  signal 
models satishing (5.10). If (5.10) is not satisfied and SNR 
# 00, then the ratio (7.8) will remain strictly greater than 
one, thus reinforcing our claim in Section V that f o r  
dumped signal models the CRB cannot be attained. 

Next, consider the case of correlated signals. In this 
case, the MUSIC error variance cannot attain the CRB. 
Furthermore, if the matrix P is nearly singular, then the 
differences { varMU (hi) - varCR ( GI ) } may take substan- 
tial values. even if rn and SNR increase without bound. 
We illustrate these facts by considering the practically im- 
portant case of a ( o )  given by (2.2). Using the results in 
Appendix G we can then show that, as m increases, the 
variances (7.5) and (7.6) tend to the following limits: 

Thus, the ratio varMU(&,)/varcR(G,) = ( P ) , , ( P - ' ) , ,  in- 
creases without bound as P approaches a singular matrix. 

To conclude, for uncorrelated signals, the MUSIC es- 
timator has an excellent performance for reasonably large 
values of N ,  m ,  and SNR. Furthermore, for undamped 
uncorrelated signals, the MUSIC error variance attains the 
CRB for large N and m (or SNR). For correlated signals, 
however. the MUSIC cannot achieve the CRB. If the sig- 
nals are highly correlated, then the MUSIC estimator may 
be very inefficient even for large values of N ,  i n .  and SNR 

B.  A Numerical Stu& 

ers, and let 
Consider the case of two signals ( 11 = 2 )  of equal pow- 

for p = 0, 0.5, 0.7 and 0.9;  U = 0.01 (SNR = 20 dB),  
and 1 (SNR = 0 dB);  m = 5, 10, 25, and 100; and vary- 
ing (wI, U : ) .  Note that in this case, when n = 2, the 
efficiency ratio (7.9) can be written as a function of the 
magnitude of the parameter separation Aw = I wI - w2 1 .  
The results obtained are shown in Figs. 1-4 as a function 
of Aw/.lr. 

Figs. 1 and 2 show the results for SNR values of 0 dB 
and 20 dB, respectively. These figures verify our theoret- 
ical result that, for uncorrelated and not too closely spaced 
signals, the MUSIC is statistically efficient for sufficiently 
large values of m. As shown in the figures, the values of 
m for which effis close to one decrease when the signal- 
to-noise ratio or Aw increases. The figures also demon- 
strate the degradation of the MUSIC efficiency when the 
correlation factor p increases. Note that for correlated sig- 
nals, the MUSIC is in general inefficient even for high 
values of m and SNR. 

Fig. 3 shows the efficiency ratio (7.9) for p = 0.5, SNR 
= 0 dB, and different values of m. Fig. 4 shows the cor- 
responding results for SNR = 20 dB. Note from these 
figures that in the case of p # 0, effdecreases with in- 
creasing m,  for some values of Aw. 

Next we show how our results can be used to evaluate 
the resolvability of the MUSIC algorithm quantitatively. 
The MUSIC algorithm is unlikely to resolve the signals 
when 8[s t .  dev.,,(w,)] > Aw (see [SI). Fig. 5 shows 
~ J Z r s t .  deV.MU(w,)l as a function o f ~ o  for SNR = o 
dB and different values of m and p .  The straight lines 
shown in the figure correspond to A A w  for N = 100, 
200, and 500. Fig. 6 shows similar results for SNR = 20 
dB. MUSIC is unlikely to resolve the two signals for val- 
ues of Aw smaller than those at the intersections between 
the normalized standard deviation curves and the straight 
lines. It can be seen from the figures that the resolvability 
of the MUSIC increases with SNR, N or m,  as expected. 
Note also that the resolvability increases much faster with 
increasing m than with N (as predicted by the developed 
theory). 

VIII.  CONCLUSIONS 
There are several new results obtained in this paper that 

should be mentioned. 
The MUSIC estimator was shown to be Gaussian dis- 

tributed for sufficiently large N ,  and two equivalent ex- 
plicit formulas, (3.12) and (7.5), for its error variance 
have been provided. Formula (3.12) can be readily used 
in practical applications to evaluate the MUSIC accuracy. 
since consistent estimates of the terms appearing in  (3.12) 
are obtained in the course of estimation of 8 .  Formula 
(7.5) is more convenient for theoretical studies of perfor- 
mance, as explained in the previous section. Note that 
formulas (3.12) or (7 .5)  can also be used to study the re- 
solvability of the MUSIC algorithm. 
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(c) (d)  

Fig. 1 ,  The relative efficiency (7.9) o f  the MUSIC estimator for two equal 
power signals as a function of signal separation A u  = 1 w ,  - w 2  1 .  The 
results shown are for different values of number of sensors V I  and cor- 
relation factor D .  SNR = 0 dB. (a) ~ I I  = 5 .  (b)  m = I O ,  (c) m = 25.  (d)  
rn = 100. 

The improved MUSIC estimator introduced in (61 has 
been shown to perform closely to the (basic) MUSIC es- 
timator for large N ,  thus providing theoretical justification 
for the empirically observed results of [6]. In fact, the 
equivalence (for large N )  of MUSIC to a whole class of 
"improved" MUSIC estimators of the form considered 
in [6] has been proved. A new MUSIC estimator has been 
obtained by slightly modifying the estimator of 161; the 
new estimator is expected to perform better than other 
MUSIC-type estimators, for reasonably small values of m 
and N .  

An explicit formula has been derived for the CRB on 
the covariance matrix of any unbiased estimator of 0.  It 

was shown that the CRB monotonically decreases with 
increasing m or N .  Simple formulas have been presented 
for the CRB in the case of large N ,  and in the case of large 
m and N and a ( w )  given by (2.2). The CRB formulas 
derived in this paper should be useful in practical appli- 
cations and theoretical studies to compare the perfor- 
mance of a given estimator to the ultimate performance 
corresponding to the CRB. 

It has been shown that the MLE of the parameter vec- 
tor 0 does not achieve the CRB for N ---f 03, if m < 00. 

For undamped signal models, however, the MLE ap- 
proaches the CRB performance if m is increased. Based 
on this type of result, some guidelines for choosing the 
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Fig. 2. As in Fig. I ,  but for SNR = 20 dB 

values of m and N in a given application (when possible) 
have been provided. 

The MUSIC estimator has been proven to be a large 
sample (for N >> 0)  realization of the MLE for any rn 
> n, if and only if the signals are uncorrelated. A con- 
sequence of this result is that the MUSIC should achieve 
the CRB for uncorrelated undamped signals and large m 
and N (see above). This property has been shown explic- 
itly to hold for general uncorrelated undamped signals. 
Furthermore, it was shown that in the case of uncorrelated 
signals, the MUSIC error variance monotonically de- 
creases with increasing rn. In particular, this provides a 
theoretical justification to the widespread opinion that the 
computationally efficient Pisarenko algorithm, which cor- 

responds to MUSIC with m = n + 1 (the smallest pos- 
sible value), is quite statistically inefficient, and better ac- 
curacy may be achieved by increasing m (at the expense 
of additional computations). For correlated signals, how- 
ever, the MUSIC performance degrades. It was shown that 
this degradation of performance can be considerable if the 
signals are highly correlated (as a remedy, in such cases 
and for uniform linear arrays, the MUSIC based on a sub- 
aperture smoothed covariance matrix can be used as pro- 
posed, e.g. ,  in [39]). Furthermore, in the case of corre- 
lated signals, the MUSIC error variance may occasionally 
increase when m increases. However, as shown in the nu- 
merical examples of Section VII, its general tendency is 
to decrease with increasing m. 
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Fig. 3 .  The relative efficiency (7.9) of the MUSIC estimator for two equal 
power signals as a function of signal separation Aw = I w ,  - w2 1 .  The 
results shown are for different values of number of sensors rn. p = 0.5  
and SNR = 0 dB. 
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APPENDIX A 
PROOF OF (3.9) AND (3.10) 

Introduce the notation 

A = G*RG - uz 

For large N, S = S + O ( l / f i ) ,  A = A + 
O < l / f i ) ,  2 = UZ + O ( l / f i ) ,  and G*$ = 
O (  1 / f i  ). Using these facts and the eigendecomposition 
of R,  we get 

(G*G)(G*G) 
= G * ( I  - $S*)G = I - ( G * S )  ( S * G )  I 

( A 4  

A = G*(S&?* + G f G * ) G  - 01 

= ( G * G ) ~ ( G * G )  - 

= (G*G)  (f - G I )  (G*G) - [ I  - (G*G) (G*G)]  

r = s*RG. U 2: (G*G)  (2  - u I )  (G*G) ('4.2) 
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m = 5  
p = o  

m = 20 
p = 0.9 

m = 20 
p = o  

r = s*(fLS* + G ~ G * ) G  = (s*S)A(S*G) R: The asymptotic distributions of the elements of 5; *G 

+ ( S * G )  f ( G * G )  

= A ( S * G )  + D(s*G)  ( G * G )  

and of G*G are independent. 
Proof: Define 

( A . 3 )  u ( t )  = S*y( t )  
and 

( S * G )  ( G * G )  

= S * ( ]  - $S*) G = -(,'j*S) ( $ * G )  = -S*G 

('4.4) 
where the terms neglected in the approximations are 
O (  1 / N  ). To proceed we need the following result. 

u ( t )  = G*y( t )  = G*e( t )  

and observe that 
l N  

A, = - C u j ( t )  u ? ( t )  - a6;,, 

rkp = - C U&) .,*(t). 

N I = ]  

1 
N I = ]  

N 
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Since 

E u ( r )  Zl*(S) = S*E?,(r) e*(s)  G = aS"Gh,., = 0 

all t ,  s 

E z ! ( t )  z j * ( s )  = G*Ee(t)  e* (s )  G = al6,,, 

E u ( t )  u T ( s )  = G * E e ( t )  e T ( s )  G +  = 0 

E u ( r )  u T ( s )  = S * E y ( t )  e r ( s ) G +  = 0 

all f, s 

all r ,  s 

it follows that 

EA, = 0 ErLP = 0. 

Furthermore, using the following formula [38] for the ex- 
pectation of the product of four complex Gaussian random 
variables { x i  }:= I of which at least one is of zero mean, 

we get 
, N N 

* [ U k ( S )  z,,*(s)] = 0. ('4.6) 

Since the elements of A and r are Gaussian distributed by 
the multivariate centrcl limit theorem, it follows from 
(A .5 )  and (A .6 )  that A, and rk,] are independent (com- 
plex) random variables. 

Now, observe from ( A .  I )  and (A .2 )  that asymptotically 
the columns of G*G form an orthonormal basis for the 
eigenspace of A .  Thus, ( A . 2 )  defines G*G uniquely (to 
within a change of sign) as a continuous function of A .  I t  
follows that A determines the asymptotic distribution of 
( G * G ) .  Furthermore, from (A.3)  and (A.4) ,  we have that 
I' = ( A  - a l )  ( $ * G  ) and, therefore, that I' determines 
the asymptotic distribution of ( $ * G  ). Since the distri- 
butions of A and I' have been shown to be independent, 
the result follows. 

If follows from the above result that ( G * G  ) in (A .4 )  
can be considered to be fixed and, therefore, that S * G  has 
the same asymptotic distributions as -$*GQ where Q is 
some (fixed) unitary matrix (note from ( A .  1) that G*G is 
asymptotically unitary). However, the columns of GQ 
form another set of eigenvectors associated with the re- 
peated eigenvalue (T. Thus, we conclude that S*G and 
- $ *G have the same asymptotic distribution. 

The important implication of the above analysis is that 
SS*g, and -S$*gI have the same limiting distribution. 
However, the limiting distribution of the latter is the same 
as that of - S ( A  - u I ) ~ ~ I ' ,  where I', is the ith column of 

I' [cf. (A.3) and (A .4 ) ] .  As explained previously, the 
asymptotic distribution of { I', } is Gaussian with zero 
mean. The covariance matrix of this distribution is de- 
rived as follows: 

lim E (  f i r ,  . f i r ; )  
N - m  

. N IV 

, N N 

( A . 8 )  
The results (3.9), (3.10) now follow from (A.7) ,  (A .@,  
and the observation that SS*g ,  and - S (  A - u l ) - ' I ' ,  have 
the same asymptotic distribution. 

APPENDIX B 
PROOF OF (3.11) 

As { 2, } is a minimum point off  ( a ) ,  we must have 

f ! ( G i )  = 0 

where 

= d * ( & , )  GG* U ( L j , )  + a * ( ; , )  GG* d ( G , )  

= 2 Re [ a * ( ; , )  GG* d ( L j , ) ] .  ( B . 1 )  
Following the idea of [ 5 ] ,  we use the expression (3.7a) of 
f ( w ) ,  which appears to be more convenient than (3.7b) 
for the analysis of the distribution of the estimation errors 
{ 2, - w, } .  Since &, is a consistent estimate of a,, we can 
write for sufficiently large N 

0 = f ' ( L j , )  = f ' ( w , )  + f " ( W l )  (GI - a,)  

= 2 Re [ a * ( a l )  GG* d ( a , ) ]  

+ 2 Re [ d * ( a , )  GG* d ( a , )  

+ a * ( a , )  GG* d ' ( a , ) ]  ( 2 ,  - a , )  

= 2 Re [ a * ( a , )  GG* d ( a , ) ]  

+ 2 [ d * ( a , ) G G *  d ( a , ) ]  (6, - a l )  (B.2a)  
where the terms neglected in the approximations are 
O (  1 / N  ). The G* in the first term of (B.2a) can be re- 
placed by G* without affecting the asymptotic distribu- 
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tion. Indeed, 

A*GG* = A*SS*GG*GG* = A * S S * ( I  - ,#*)GG* 

= - A * S ( S * S ' )  (S'*G) G* = -A*S(S '*C)  G* 

(B.2b)  

(where again the terms neglected are U (  1 / N ) ) ,  and 
-g*G has been shown in Appendix A to be asymptoti- 
cally equivalent to S * C .  Also note that 

u * ( o , )  GG* d ( w , )  

= a * ( w , ) S S * G G *  d ( w , )  

735 

From (B.2) and (B.3) we get (neglecting the higher-order 
terms) 

a, - a, 
J J J  - J I  

= -Re [ ! , = I  [ g : d ( w ! ) ]  [ ' * ( w l ) S S * g ] j / h ( w J ) .  

(B.4)  

The asymptotic zero-mean Gaussian distribution of { G J  - 
w ,  } follows from (B.4) and Lemma 3.1, part b. It remains 

" 
( I / N )  U61 p 

1 
N 

= - [ d * ( w , )  GG* d ( w , ) ]  [.*(U,) U U ( U , ) ] .  

(B.7)  

Formula (3.11) now follows from (B.4)-(B.7), and the 
proof is finished. 

Remark: It is worth noting that the asymptotic dis- 
tribution of the MUSIC estimation errors could be derived 
from (B.2a), (B.2b), and part (a) of Lemma 3. I ,  thus cir- 
cumventing the need of using part (b) of the lemma. How- 
ever, we preferred to base the derivation on part (b) of 
Lemma 3.1 to motivate inclusion of the results (3.9), 
(3.10) which appear to be of independent interest. Note, 
for example, that results (3.9), (3.10) are used in Appen- 
dix D to establish the asymptotic distribution of the ran- 
dom variables (3.13). 

APPENDIX C 
PROOF OF THEOREM 3.2 

Let i3 denote a generic minimum point of (3.14). A sim- 
ple Taylor series expansion similar to (B.2) gives 

0 = a ' ( & )  = d ( w )  + a " ( w )  (i3 - w )  (C.1)  

where 

(C.2a) 

to verify formula (3.11) for the variances-covariances of 
the estimation errors { i3, - U, } .  Toward this end, note 
that for two scalar-valued complex variables, U and U ,  we 
have 

Sincef(w) = U (  1 / N )  a n d f ' ( o )  = U (  l / f i ) ,  it fol- 
lows from (C. 1 )  and (C.2) that 

0 = d(0) + c Y " ( 0 )  ( 2  - U )  

Re ( U )  Re ( 2 ) )  = ;[Re ( U ? ) )  + Re ( u t ) * ) ] .  (B.5) 

where the neglected terms go to zero faster than ( i3 - U ) ,  

when N tends to infinity. From (C.3), we get 

f ' ( o )  + f l ' ( w )  (i3 - U )  = 0 

which is exactly (B.2) corresponding to MUSIC, and thus 
the proof is finished. 

APPENDIX D 
PROOF OF (3.15) 

It follows from Lemma 3.1 that the random variables 

E ,  A . * (U )&  = a * ( w ) S S * g ,  i = 1 ,  * .  . , m  - n 



136 IEEE TRANSACTIONS ON ACOLISTICS. SPEECH. AND SIGNAL PKOCESSING. VOL 37. N O  5 .  MjIY IYX'I 

are Gaussian distributed with zero means and the foliow- 
ing variances-covariances: 

1 
N 

= -.*(a) U u ( w ) S , . ,  

EE,E]  = 0 for all i. j .  (D.1)  

From (D. 1 )  we get 

1 
4 

EZLZ,, = - E ( E ~  + E : )  ( E , ,  + E , * )  

1 
2N 

= - .*(a) U u ( w )  Sk,p  

1 
2N 

1 

= - .*(U) U u ( 0 )  Sk,p  

EE - = - E ( E ~  + E : )  ( E , ,  - E ; )  = 0 

Thus, the likelihood function is given by 

for ail k and p .  k E P  4i 

L ( E I ,  . . 7 E m - " )  

a 
= L(EI,  * * *  7 - E m - , ,  € 1 ,  ' . * > till - 11 1 

1 

(27r)'"-" [ (  1 /2N)  u * ( w )  C/a(w)] ' " - ' '  
- - 

and, therefore, the log-likelihood is 

In L = const - ( m  - n )  In [.*(U) U U ( W ) ]  

- [ N m i n  k =  I l c k 1 2 ] / [ u * ( w )  U u ( w ) ]  

which proves (3.15). 

APPENDIX E 
DERIVATION OF THE CRB 

The likelihood function of the data is given by 

L(  Y ( l L  * * 3 Y(" 

Thus, the log-likelihood function is 

l N  
In L = const - mN In U - - c [ y * ( t )  - x * ( t ) A * ]  

U I = I  

* [ Y @ >  - W)I. (E.  1 )  

First, we calculate the derivatives of (E. 1 )  with respect 
to U, ( X ( t )  A R e x ( t ) ) ,  ( 2 ( t )  A I m x ( t ) )  and 8 .  We 

have 

a l n L  mN 1 
-- + C e * ( t )  e ( r )  ~- - au U U 1 = I  

(E .2a)  

a i n ~  1 2 
- [ A * e ( k )  + A T e + ( k ) ]  = - Re [ A * e ( k ) ]  

a i ( k )  U U 

k = 1 ,  a * *  , N (E.2b)  

a i n L  = - 1 [ -iA*e(k) + i A T e t ( k ) ]  = 2 - Im [ A * e ( k ) ]  

a q k )  

k = 1,  e * *  , N  
and 

(E.2c ) 

N 

= Re [x: ( f )  d * ( w , )  e ( t ) ]  

, n  

U I = l  

i =  1, - * a  

which can be written more compactly as 

a i n ~  2 
= - C Re [ X * ( t ) D *  e ( r ) ] .  (E.2d) ae 1 = 1  

To proceed, we need a number of results. These are stated 
and proven in the following. 

RI:  E e * ( t )  e ( t )  e*(s)  e ( s )  

Proof: For t # s, 

Ee*( t )  e ( t )  e*(s )  e ( s )  
= [ E e T ( r )  ~ ( t )  + E F ~ ( ~ )  ~ ( t ) ] -  ' = m-U-. 7 7  

For f = s, 
Ee*( t )  e([)  e * ( s )  e ( $ )  

= E [ Z T ( f )  e ( t )  + P T ( f )  f ? ( r ) l L  
= E [ e T ( r )  e ( t ) l '  + ~ E [ z T ( ~ )  ~ ( t ) ]  E [ e T ( r )  ~ ( t ) ]  

+ E [ P T ( r )  Z ( t ) ] '  
7 

7 7  
= 2 ~ [  e T ( r )  e ( r ) ] -  + fm-a - .  

Since 

E [  e T ( r )  e ( t ) ] ?  
It1 111 I l l  I l l  

= E  C C e f ( t ) e f ( t )  = C C E e z ( r ) E e f ( r )  
, = I  / = 1  1 = I  ] = I  

/ + I  

111 

+ E $ ( f )  
I = I  

> 
U 2  U 2  U -  

= ( m  - 1 ) m -  + 3 m -  = m ( m  + 2 ) -  
4 4 4 

the proof is finished. 

R2: Ee*(r )  e ( t )  e T ( 5 )  = 0 for all t and J. (E .4)  
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Proof: For f # s. the result is immediate since e (  t )  
and e ( s )  are independent. For t = s, i t  follows from the 
fact that the third-order moments of Gaussian random vari- 

rn ables are equal to zero. 

R3: Re ( x )  Re ( y ' )  = ;[Re (xy') + Re (."*)I 
Im (x)  Im ( y') = - t [Re  (sy') - Re ( x y * ) ]  

Re (x) Im ( y') = i [ I m  (xj') - Im ( x y * ) ] .  

( E . 5 )  
Proof: The result follows from some straightforward 

calculations. rn 
R4: Let H be a nonsingular complex matrix, and de- 

note its inverse by G b H - ' .  Then 

Proof: The equality (E.6) can equivalently be writ- 
ten as 

__ 
HG - HG = I 
_ 
H G  + HG = 0 

which certainly must hold since 

I = H G  = ( H  + i f?)  ( G  + iG) 
= ( H G  - H G )  + i ( H G  + H G ) .  rn 

Turn now to the evaluation of the CRB covariance ma- 

Q = (E.7a) 

trix, which is given by 

where 

$' a In L/d[~x'( 1 )  a'( 1) . x ' ( N )  . f ' ( N ) O ' ] .  
(E.7b) 

Using R 1, we get 

mN - -  
U ? .  

- (E.8a) 

Using R2. we note that d In L / a a  is not correlated with 
any of the other derivatives in (E.2).  

Next. we use R3 and the fact that E e (  t )  e' ( J ) = 0 for 

737 

all t and s (see assumption A 2 ) .  to obtain 

2 
= - U Re [ A * A ]  hk , , ,  (E .8b  ) 

(E.Xc ) 
2 

= -- In1 [ A " A ]  
U 

. Re [EA*e(k) e * ( r )  D X ( t ) ]  

= Re [ A * D X ( k ) ]  (E.8d ) 

2 
= - Re [ A * A ]  hk , , )  (E .& ) 

U 

\ \  
4 1  

Introduce the following notations: 

var,,( u )  = U ' / ~ I N  

H = - A*A 
U 

Observe that since the matrix H is Hermitian. its imagi- 
nary part must be skew-symmetric H '  = - H .  Inserting 
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1 -  I a l = l  

- IW* 

( E . 8 )  into (E.7)  and using the notation above, we get 

1 Huu*H + u*Hu I H - 

I 

(E .9 )  

0 

[ i; A;:. I ,  . . a,;, 6; ~ r 

The expression (4.2) for varo( a )  is thus proven. To  
prove the expression (4.1) for CRB ( 8 ) .  we note that 
(E.9) .  a standard result on the inverse of a partitioned ma- 
trix, and R4 give 

. -  
C R B - ~ ( ~ )  = r - [a;. Ay': . . . .A; A;] 

Next. observe that 

G 

and that 

- 
A' A']  1: I = Re [A*GA]. 

From (E.  IO)  and (E. 1 l ) ,  i t  follows that 

CRB-'(B) 
I 

information in the mean and covariance, see 141 1. instead 
of the standard general formula (E.7) .  

APPENDIX F 
PROOF OF (4.3) 

We have 

CRB- ' (N + 1 )  = C R B - ' ( N )  + 2 Re { X * ( N  + 1)D* 

. [ /  - A ( A * A ) - ' A * ]  DX(N + 1 ) ) .  

( F . 1 )  

The matrix in braces is Hermitian positive definite and 
thus its real part is symmetric positive semidefinite. This 
observation and (F. 1) prove (4.3a). 

To prove (4.3b), let us introduce for convenience the 
following notation: 

H = (A;411)-1 

= A;D,,, 

U* = the last row of A,,, + I 

1 1  * = the last row of D,,, + I 

Making use of the nested structures of A,,, I and D,,, + I, 

A,,, D,,, 
A,,,. ,  = [ 1 D,,,+l = [-[,*I 

and of the matrix inversion lemma (see. e.g., [ 3 2 ] ) ,  we 
( E . ~ o )  can write 

D;+ I [ I  - A,,,+ I ( A ; +  lA,,,+ I ) -  !A ;+  I ]  D,,, t I 

= D;D,,, + [ I l l *  - ( G *  + I tu*)  ( H - '  + U P - '  

* ( G  + U[,*) GA 

Huu * H ( E .  1 l a )  
= D;D,,, + [T* - ( G* + VU* H - ( 1 + u*Hu 

where 

= 2 Re { X * ( r ) D *  [ I  - A ( A * A ) - ' A * ]  D X ( t ) )  - 
a , - I  

Huu*H 
t ~ *  H - I 1 + u*Hu 

I 
1 + u*Hu 

which completes the proof. = ( 1 1 1 1 "  + tJtl*u*Hu + G*Huu*HG - G*Hu/l* 
Rpnzurk: A slightly more compressed derivation of 

extension of Bangs' formula (401 for the CRB matrix with 

- ZIU*HG - z ~ u * H u I J * ) / (  I + u*Hu)  
the CRB formula (4.1) can be obtained if one uses the 

= ( I '  - G*Hu) ( 1 1  - G*Hu)*/( 1 + u*Hu). 
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Since the matrix Q is evidently Hermitian positive semi- 
definite, the inequality (4.3b) follows from (F.2)  and the 
expression (4.1) of the CRB. 

APPENDIX G 
PROOF OF THEOREM 4.3 

Let 

H = D * [ I  - A ( A * A ) - ' A * ]  D. 

Then, the i, j element of the matrix whose inverse appears 
in (4.1) can be written as 

APPENDIX H 
PROOF OF (5.8) 

A "standard" deviation of varML-( A ) ,  which begins by 
developing dg ( a)/& I = in a Taylor series around the 
true frequency, appears to be rather lengthy. In the fol- 
lowing, we provide a simpler derivation, which makes use 
of Theorem 6.1 proven in Appendix I .  That result states 
that 

2' [d*(a) ( I  - S ' S 3  r l (a)]  ( H . 1 )  

where the expression for varMU ( A )  (i.e.,  the MUSIC vari- 
ance) follows from (3.12). Since for the case under dis- 
cussion, R is given by 

1 d * ( a , )  [ f  - A ( A * A ) - ' A * ]  d ( w , )  I =  c I x: ( 1 )  , x l ( f )  

Since by definition 
, N  

R = Pu(w) .*(a) + of 
it readily follows that 

SI = .(a)/&. (H.2  1 it readily follows that for sufficiently large N .  the CRB is 
given by Inserting (H.2) into (H.  I ) ,  we get (see also (4.4)) 

U 
- [Re ( H  o I")]-' 
2N 

which proves part (a). 

the following result 1261: 
Next consider part (b). To prove (4.7) we make use of - 

4 N m2(m' - 1 ) ~ '  

and the proof is finished. 
I / ( k  + 1 )  f o r a ,  = a' 

for w1 # a'. APPENDIX I 
PROOF OF THEOREM 6.1 

1 ~ l e l l ( o l - w ? )  

m'+l r = I  111 - m 

( G . l  ) The idea of the proof can be explained as follows. A\ 
shown in Section V ,  the ML estimate I9 of 0.  which is 
defined by [see (5.4)] 

Using (G. l ) ,  we can write 

1 
111 - m 3 g ( 8 )  = tr [A(A*A)-'A*RI = max ( I .  I )  
- - 8' /, 

1 1 - I 
-i [D*DIkl, = f2p"'w12-o') 

m 
. 111 - I 

-i m- [A*DIk,, - m' I =  I 
1 - 1 t e l l ( w l , - w L )  i converges to the true values when N tends to infinity. Fur- 

thermore, the estimation errors ( 8  - 19)  are O (  1 /&' ) 
for large N .  According to this fact, we can neglect the 
terms in (1.1) whose derivative with respect to 8 is 
O (  1 / N  ), without affecting the asymptotic ( for  N >> 0 )  
distribution of the MLE that maximizes ( I .  1 ) .  

To implement the idea above, we need to introduce 

- - 6 k . p  
111-m 2 

- & . / I  

1 1 'I' i ) ( o , r - w k )  

m m r = l  I I I  - m 
- [A"Alk/,  = - z 

which readily give 

1 some additional notation. Let 
- D * [ I  - A ( A * A ) - I A * ]  D 
m3 

Inserting (G.2) into (4.6), we obtain (4.7), and the proof 
is finished. 
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Then, the eigendecomposition of R can be written as fol- 
lows: 

R = $A$* + GCG*.  

Inserting (1.2) into (I. l ) ,  we obtain 

g(8)  = tr [($*a) ( A * a ) ’  ( a * $ ) A ]  

+ tr [(a*A)-’ ( A * G )  c(G*A>] 

A*G = O (  

Since, for large N ,  

and 

c = az + O ( l / & ) ,  

it follows that we can replace C in (1.3) by ul 

g ( 8 )  = tr [($*a) (a*A)-’ (a*$) A]  

+ tr [(A*A)-’a*GG*Al u 

= tr A + tr [($*A> (,i*A)-’ (A*$> - I ]  A 

= tr A + tr [($*a) (A*A)-’ (a*$) - I ]  

- tr [(A*A)-’A*,B*~ - I] u 

* [A  - u Z ] .  (1.5 1 
Define 

A = GG*a = A - $$*a 
and observe from (1.4) that A = O (  1 /A)>. Since $*A 
= 0, we can write 

a*a = [A* + a*$$*]  [A + $ $ * a ]  

= A*A + (a*$) ($*a). (1.6) 

Next, note that the matrix S * A  is nonsingular. This fol- 
lows from the fact that A = SQ for some matrix Q ,  and 
Q must be nonsingular since A has full rank by assump- 
tion. Thus, the matrix $*a which, for large N ,  is close to 
S*A,  must also be nonsingular. Using this observation and 
(1.6), we get 

($*A) (A*a)-’ (A*$) - I 

= [ I  + (A*$)p’A*A($*a)’]-’ - I 

- (a*$ )-’A*A ($*a)-’ (1.7) 

where we also used the fact that for some matrix r of 
subunitary norm ( I  + = I - r + I” - I’3 + 

* 

g(8) = const - t r ~ * ~ ( S * a ) - ’  [ A  - a11 (A*$)-’. 
. Inserting (1.7) into (1.5), we obtain 

(1.8) 
To complete the proof, we only need to show that the 

matrix that multiplies A*A in (1.8) can be replaced by P .  
Since 

R = APA* + ul = a P a *  + ul + O (  l / & )  

= $A$* + GCG* + O (  l / f i )  

it follows that 

($*a) P ( a * $ )  + ul = A + O(  l / & )  

or yet 

P = ($*a)-’ ( A  - u l )  (a*$)-’ + O ( l / & ) .  (1.9) 

From (1.8) and (1.9), we obtain the following large sam- 
ple (for N >> 0 )  approximation to g(8):  

g ( 8 )  = const - tr [ A * G G * A ]  [ P I .  (1.10) 

Maximization of (I. 10) with respect to 8 is equivalent to 
minimization of the MUSIC function (3.7) if, and essen- 
tially only if, the matrix P is diagonal. Thus, the proof is 
finished. 
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